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Abstract|We show that, in the limit as the number of
users K and the processing gain N both go to in�nity with
� = K=N constant, there is no di�erence in the convergence
speed of the training-based least mean square (LMS) and
blind minimumoutput energy (MOE) adaptive CDMA de-
tectors. The analysis is based on deriving the asymptotic
eigenvalue spread of the two correlation matrices govern-
ing convergence of these two algorithms.

I. Introduction

Adaptive code division multiple access (CDMA) detec-
tors mitigate interference with minimal side information.
In the case of the blind MOE detector [1], one only re-
quires the same information as a conventional matched-
�lter receiver; for the training-based LMS detector [2],
[3], one only requires a training sequence (which have
to be inserted into the information-bearing data symbol
stream at regular intervals) and symbol timing for the
desired user. Other forms of these two basic algorithms
have also appeared in the literature. They all have the ad-
vantage of being applicable on the downlink of a commu-
nications system, unlike most other multiuser detectors,
but the disadvantages of requiring the use of short codes,
and that the channel be slowly and smoothly changing
over time at worst.

On balance, it appears that adaptive detectors can be
used for low-mobility applications such as wireless local
area networks (LANs) or wireless local loops (WLLs)
where relatively long setup times1 are acceptable. In
mobile, fading channels, their practicality unfortunately
appears to be limited, as recently shown in [4]. From
this point of view, adaptive detectors have a place in the
lexicon of communications systems, and in this paper,
our objective is to apply the theory of large-dimensional
matrix eigenstructure [5] to the analysis of convergence
speed of both the blind MOE and training-based LMS
detectors.

Our main result is that, for the same adaptation step
size �, the speed of convergence from rest is identical for

1Adaptive algorithms can take many tens or even hundreds of
symbols to converge to a steady state.

both detectors, in the limit as K and N grow to in�nity
while keeping K=N constant and �nite. Computer sim-
ulations indicate that even for values of K and N that
are quite small, the behaviour predicted by asymptotic
analysis holds to a large degree.

II. Relevant Past Results

A. Adaptive CDMA Detectors

As is well known from [6] and other multiuser detection
publications, the received-signal vector can be expressed
as

y(i) = A(i)d(i) + n(i) (1)
where y(i) 2 CN is the vector of baseband received-signal
samples used for the detection of the desired user's ith
symbol; A(i) 2 CN�K is the channel matrix, incorpo-
rating both spreading-sequence and channel information;
d(i) 2 CK is the vector of transmitted symbols contribut-
ing to y(i); and n(i) is a vector of samples of an additive
white Gaussian noise signal with zero mean and covari-
ance N0

2
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A linear adaptive detector forms a decision statistic for
user 1 (assumed without loss of generality to be the user
of interest) by �ltering y(i):

d̂1(i) = wH(i)y(i) (2)
where w(i) is the length-N �lter tap-weight vector in
the ith symbol epoch, and is obtained through a time-
iterative process. In this paper, we are interested in the
following two algorithms:

LMS : w(i+ 1) = w(i) + �e�(i)y(i)

MOE :

�
x(i+ 1) = x(i)� �z�(i)Py(i)
w(i+ 1) = x(i+ 1) + a1

The vector a1 is the column of A that couples with
d1(i), z(i) = wH(i)y(i) is the �lter output, e(i) =
d1(i) � z(i) is the estimation error term needed in the
LMS algorithm, and P performs an orthogonal projec-
tion onto the vector space orthogonal to a1. We note
that for adaptive algorithms such as the LMS and MOE
to work in the CDMA scenario, the spreading sequences
of all users must have periods equal to the symbol rate,
and hence A(i) = A.



B. Eigenvalues of Large-Dimensional Correlation Matri-
ces

From the results presented in Bai and Yin [5], we can
deduce the following theorem:

Theorem 1: Given a matrix S = 1

N
XXH, where the

elements ofX are independent and identically distributed
(i.i.d.) with zero mean and variance �2, and X has K
rows and N columns, the largest and smallest non-zero
eigenvalues of S converge in the limit as K;N !1 for a

�xed �
4
= K=N to

�max = (1 +
p
�)2�2 (3)

and �min = (1�
p
�)2�2 (4)

respectively.

This theorem (and its corollaries) allows for a deeper
analysis of the relative convergence behaviour of the
training-based LMS and blind MOE detectors than what
is currently known, as we showed in [7]. Although strictly
valid only in the limiting case of large K and N , the re-
sulting conclusions appear from simulations to hold even
for �nite-dimensional systems. In the present paper, we
focus only on the speed of convergence, given identical
adaptation step sizes.

III. Eigenvalue Spread of Input Correlation

Matrices

A. Training-Based LMS Detector

Because the elements of the matrix X in Theorem 1
are required to be i.i.d., we need to restrict our atten-
tion to synchronous, equal-power CDMA systems. Under
this constraint we lose no generality in assuming that the
spreading-code matrixA has columns of unit norm. Then
clearly AHA = 1

N
SHS where S =

p
NA 2 f�1gN�K.

Therefore if the spreading codes are randomly drawn from
a binary distribution, we have

lim
K;N!1

�max(A
HA) = (1 +

p
K=N)2

lim
K;N!1

�min(A
HA) = (1�

p
K=N)2:

This observation has already been made elsewhere (see
[8], [9]) and others).
In an LMS adaptive detector, the convergence speed

when the weight vector is initialised to zero is determined
by the eigenvalue spread (i.e. the ratio of the largest and
smallest eigenvalues) of the input correlation matrix Ryy

in the signal subspace [10]. Now it is easily shown that

1. Ryy = AAH + �2I;

2. the eigenvalues of Ryy and AA
H di�er by �2;

3. the non-zero eigenvalues of AAH, which are the eigen-
values in the signal subspace, are equal to those of AHA.

Putting these three facts together gives us the following
corollary.
Corollary 1: In the limit as K and N tend to in�nity,

and � = K=N is constant, the minimum and maximum
eigenvalues of Ryy = AAH + �2I in the signal subspace

converge with probability 1 to
�min(Ryy) = (1�

p
K=N)2 + �2 (5)

�max(Ryy) = (1 +
p
K=N)2 + �2: (6)

It is common practice to initialize the �lter tap-weight
vector to the origin, i.e. w(0) = 0, in which case the
eigenvalue spread that interests us is [10]


LMS =
(1 +

p
K=N)2 + �2

(1�
p
K=N)2 + �2

; (7)

an expression which we will compare against the corre-
sponding result for the blind detector.

B. Blind Minimum Output Energy (MOE) Detector

We have shown in [11], [7] that the equivalent corre-
lation matrix that governs convergence of the MOE de-
tector is Rvv = PRyyP, where P = I � a1a

H
1 . Further-

more, when we set x(0) = 0, it can be shown [7] that the
K � 1 largest eigenvalues of Rvv determine the conver-
gence speed of the MOE detector. We therefore seek an
asymptotic expression for the ratio of the largest to the
smallest of these K � 1 eigenvalues.
Given that Ryy = AAH + �2I, we can write

Rvv = PAAHP+ �2P (8)

= (PA)
�
AHPH

�
+ �2I� �2a1a

H
1 : (9)

Since Pa1 = 0, it is clear that Rvva1 = 0, and hence a1
is an eigenvector of Rvv with an eigenvalue of zero.
Consider also that Rvv is a symmetric matrix, and

therefore has orthogonal eigenvectors. If ei, i =
1; : : : ; N � 1 are the eigenvectors of Rvv not equal to
a1, then a

H
1 ei = 0. Suppose that �i is the eigenvalue as-

sociated with ei, then by de�nition Rvvei = �iei. Sub-
stituting (9) into this expression yields�

APA
H
P + �2I

�
ei = �iei (10)

or APA
H
P ei = (�i � �2)ei (11)

where AP = PA. This means that there are N�1 eigen-
values of APA

H
P which are uniformly smaller than those

of Rvv by �2. (As is readily veri�ed, the one remaining
eigenvalue of APA

H
P is zero, and is paired with the eigen-

vector a1.) Finding the maximum and minimum eigen-
values of APA

H
P thus allows us to deduce the eigenvalue

spread of Rvv within its signal subspace.
To proceed, we observe that, since Pa1 = 0,

APA
H
P = PAAHP = PA�1A

H
�1
PH (12)

where A�1 denotes the matrix A with the �rst column
removed. Observation (12) allows us to say that the non-
zero eigenvalues of APA

H
P are identical to those of�

AH
�1
PH
�
(PA�1) =

1

N
SHPSP (13)

where SP =
p
NPA�1.

Assuming that A�1 is a random matrix with zero-mean
i.i.d. elements, SP (being a projection of A�1 onto a ran-
dom subspace) is also a zero-mean i.i.d. random matrix.
Keeping the ratio (K � 1)=N constant as K and N grow
to in�nity will hence admit the use of Theorem 1 to �nd
the asymptotic minimum and maximum non-zero eigen-
values of APA

H
P .



The one remaining unknown is the variance of the i.i.d.
elements of SP , which we �nd by noting that the kth
column (k = 1; : : : ;K � 1) of SP is

sp;k =
p
N(I�a1aH1 )ak+1 =

p
N(ak+1�a1�1;k+1); (14)

where �1;k+1
4
= aH1 ak+1. With some trivial manipula-

tions, we can show that
E[sHp;ksp;k] = N �E(1� j�1;k+1j2): (15)

But �1;k+1 =
PN

n=1 a
�
1;nak+1;n, and assuming indepen-

dence between a1;n and ak+1;n for all n, we have

Eja�1;nak+1;nj2 = Eja1;nj2 � Ejak+1;nj2 = 1

N2
: (16)

Therefore, Ej�1;k+1j2 = 1

N2
�N =

1

N
, and we have

E[sHp;ksp;k] = N � 1: (17)
The individual elements of SP have a variance that is
1=N times of that, i.e. 1� (1=N).
Referring to Theorem 1, we can now state that, as K

and N tend to in�nity but (K � 1)=N remains constant,
the minimum and maximum non-zero eigenvalues of Rvv

converge to

�min(Rvv) =

 
1�

r
K � 1

N

!2�
1� 1

N

�
+ �2 (18)

�max(Rvv) =

 
1 +

r
K � 1

N

!2�
1� 1

N

�
+ �2:(19)

Finally, since asymptotically K � 1 ! K and 1=N ! 0,
we have

�min(Rvv) =

 
1�

r
K

N

!2
+ �2 (20)

�max(Rvv) =

 
1 +

r
K

N

!2
+ �2: (21)

Comparing these expressions with (5) and (6), we can
conclude that in the limit, the blind MOE and training-
based LMS CDMA detectors have no di�erences in con-
vergence behaviour. This conclusion does not contradict
the results of [12], which states that the blind MOE detec-
tor always converges faster than the training-based one,
but does not indicate how much faster it converges. Here,
we have shown that for large systems, the di�erence in
convergence performance is negligible.

IV. Simulations

We simulated K = 8, N = 12 synchronous CDMA
systems with spreading sequences randomly selected for
each experiment. All users were received with the same
power, and Eb=No = 5 dB for each user. In Figure 1,
we let the MOE and LMS algorithms have the same step
size � (= 0.02), and averaged the MSE and SIR for user
1 over 1000 independent runs i.e., di�erent noise realiza-
tions and transmitted bits were used in each of 1000 sepa-
rate experiments, but the same spreading sequences were
used throughout. Both algorithms reach their steady
states after about 100 symbols. However the MOE al-
gorithm had a measured misadjustment of 49.67 % and
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Fig. 1. MSE and SIR curves for the LMS and MOE algorithms
when � = 0:02 for both cases.

�nal SIR of some 5 dB, while the LMS algorithm had a
misadjustment of only 9.53 % and a �nal SIR of over 6
dB.

Simulations of a more realistic asynchronous, fading
CDMA channel are ongoing.

V. Conclusions

We have shown through large-system analysis that
asymptotically, as the number of users and processing
gain grow to in�nity at the same rate, there is no di�er-
ence in eigenvalue spread of the relevant correlation ma-
trices for the LMS and MOE adaptive CDMA detectors.
This implies that for a given step size �, we should ex-
pect no di�erence in convergence speed, though the �nal
signal-to-interference ratio (SIR) of the two algorithms
di�er substantially. We should add that more substan-
tive results that show that the MOE algorithm is always
expected to have worse performance than the LMS are



derived in [7], again using the tool of large-system anal-
ysis.
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