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Abstract| This article introduces a class of index-
optimized near-ellipsoidal lattice codes, which we refer to as
\generalized Voronoi codes". We derive a necessary condi-

tion for the existence of such codes and present fast indexing
algorithms. We also investigate several eÆcient strategies
for outlier saturation. Algorithmic details are provided for

the lattices A2, Dn, and RE2n only.
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I. Introduction

W
E address the problem of designing eÆcient �xed-
rate lattice quantizers with ellipsoidal shaping. This

work is mainly motivated by recent developments in speech
coding, and speci�cally by spectrum coding with principal
component analysis and Gaussian mixture modelling [6].
The lattice shaping problem was initially stated in the

context of modulation to reduce the average signal power
[10], and to minimize the average probability of error given
dimension and average energy [11]. In the context of vector
quantization this problem arises when optimizing a lattice
truncation according to the source memory or the marginal
density shape. We consider only the case of ellipsoidal
shaping for vector quantization. This sub-problem was al-
ready studied in [7], [8], [9]. However, [7] used the lattice
Zwhich provides no granular gain. And in [8] the indexing
of codevectors was not considered, but rather addressed in
[9].
In this paper, we present a generalization of Voronoi

coding [1] which yields near-ellipsoidal lattice codes with
fast indexing algorithms. We also propose several eÆcient
strategies for outlier saturation. By lack of space, only the
lattices A2, Dn and RE2n are considered herein, the proofs
are omitted and the performance of the nearest-neighbor
search algorithms is not presented.

II. Notations and definitions

Before proceeding further, we shall de�ne the necessary
conventions and notations. The scalar operators b:c and
d:e round any input in R to the nearest integer in Z to-
wards �1 and +1, respectively. The row convention is
used for vectors. Therefore, if x is a vector in R

n , and
by denoting its transpose as xT , xxT corresponds to the
squared Euclidean norm of x. The vector operators mod,
mult and div denote the element-by-element modulo, mul-
tiplication and division, respectively. In other words, if

This work was �nanced by the NSERC and VoiceAge Corp.
S. Ragot and R. Lefebvre are with the Department of Electrical

and Computer Engineering, University of Sherbrooke, Sherbrooke,
Qu�ebec, J1K 2R1 Canada. E-mail: fragot,lefebvreg@gel.usherb.ca
?Work done when at the University of Sherbrooke.

x = [x1 � � �xn] is a vector in Rn , j = [j1 � � � jn] a vector in
Z
n and m = [m1 � � �mn] a vector in N�n (i.e. a vector of

positive integers with non-zero components), then

mod(j;m) = [j1(modm1) � � � jn(modmn)] (1)

mult(x;m) = [x1m1 � � �xnmn] (2)

div(x;m) = [x1=m1 � � �xn=mn] (3)

where mod is the scalar modulo operator de�ned as:

x (modm) = x�mbx=mc =
�

x�mbx=mc; x � 0
x+md�x=me x < 0

In the general case, a lattice in R
n is denoted �, with

generator matrix G�. We use the row convention for G�.
That is, if k is a vector in Zn, y = kG� generates a point in
� and j = yG�1

�
retrieves the related basis expansion. We

will use more speci�cally the lattices A2, Dn and RE2n.
The lattices A2 and Dn are de�ned in [13], and we de�ne
RE2n as follows:

RE2n = 2D2n [
�
2D2n + (12n)

	
(4)

The Voronoi region related to the lattice point y in � is de-
noted V�(y). In a lattice all Voronoi regions are congruent,
and we can consider V�(0) only. For a vector m in N�n,
V�(0;m) represents the region V�(0) scaled non-uniformly
according to m (i.e. V�(0;m) =mult(V�(0);m)).

(a) Voronoi code (b) generalized Voronoi code

Fig. 1. Example of Voronoi codes ('+') derived from the A2 lattice.

A. Voronoi coding

A Voronoi code of size 2nR, R integer > 0, is de�ned as
C(�; R; a) = �\�2R V�(0) + a

�
, where a is an appropriate

o�set. Therefore C(�; R; a) corresponds to a truncation of
� by a scaled Voronoi region 2RV�(0) translated by a, as
illustrated in Fig. 1 (a). The extension of this de�nition
to lattice shaping by geometrically-similar sublattices [12]
is not considered herein.
Voronoi shaping yields index-optimized lattice codes

since indices and codevectors in C(�; R; a) can be gener-
ated eÆciently from the generator matrix of � by lattice
decoding and modular arithmetics.



Voronoi codes were introduced in [1] with fast index-
ing algorithms, but without considering nearest-neighbor
search. The latter topic was addressed in [2]. In particu-
lar, it was suggested in [2] that an outlier can be projected
on a properly scaled and translated Voronoi facet.

B. Generalized Voronoi coding

We de�ne generalized Voronoi codes by extending the
Voronoi lattice shaping of [1] to Voronoi regions with
non-uniform component scaling, as depicted in Fig. 1
(b). Given m in N

�n, we obtain C(�;m; a) = � \
(V�(0;m) + a). The resulting code size is

Qn

i=1
mi. The

o�set a is still chosen to ensure that no lattice point be-
longs to the surface of the scaled and translated Voronoi
region (V�(0;m) + a). As we shall see later, if we general-
ize the indexing algorithms described in [1] for these codes,
constraints on m may apply [3].
The idea of generalized Voronoi coding was introduced in

[3] { however, in [3] generalized Voronoi codes were de�ned
for speci�c lattices (namely, the lattices A2, Dn,

1

2
RE8 and

1

2
RE10) and with strong restrictions on m.

III. Generalized Voronoi indexing

Fast indexing algorithms for generalized Voronoi codes
based on the lattices A2, Dn and 1

2
RE8 are presented in

[3]. Their common framework is summarized in Fig. 2.
Contrary to [3], we have incorporated the o�set a in the
description of the inverse mapping.

Forward mapping: codevector y ! index k

1. Compute j = yG�1�
2. Modify conditionally j
3. Compute k =mod(j;m)

Inverse mapping: index k ! codevector y
1. Compute u = kG�

2. Compute z = div(u � a;m)
3. Find the nearest neighbor v of z in �
4. Compute y = u�mult(m;v)

Fig. 2. Generalized Voronoi indexing in a lattice �.

Note that the index k = [k1 � � � kn] is a vector of integers
which verify 0 � ki < mi (1 � i � n).

A. Condition on the existence of generalized Voronoi codes

For the inverse mapping to produce lattice points in � we
shall verify the condition : mult(m;v) 2 � where m is a
vector of integers and v a lattice point. This condition im-
plies constraints on m = [m1; � � � ;mn] which can be sum-
marized in a matrix format as: G�diag(m1; � � � ;mn)G

�1
�

is a matrix of integers.

Example: For the lattice A2 the above condition becomes

GA2

�
m1 0
0 m2

�
G�1
A2

=

�
m1 0

m1�m2

2
m2

�
; (5)

where GA2
is set as in Fig. 3. We obtain that m1 and m2

shall have the same parity.

It can be shown that a similar condition applies for the
lattices Dn, i.e. m1; � � � ;mn shall have the same parity.
And for the lattices RE2n we obtain: all mi shall have the
same parity and their sum shall be a multiple of 4.

B. Conditional modi�cation step in forward mapping

The conditional modi�cation step in the forward map-
ping depends on the lattice � (and possibly the o�set a [3]).
It is needed, otherwise the forward mapping may not pro-
duce unique codevector labels. Note that when the mod-
ulo vector m has identical components, this step is not
required.
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(a) GA2
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Fig. 3. Generator matrices for A2, Dn and RE2n

In what follows, we consider the case of A2, Dn and
RE2n. The proposed solution generalizes the algorithms
described in [3] and requires the lattices to be speci�ed by
a lower triangular generator matrix as in Fig. 3.

B.1 Conditional modi�cation for A2

If y belongs to the generalized Voronoi code C(A2;m; a),
we can assume that it was generated from the index
k = [k1k2] by inverse mapping. Then we can write
y1 = u1 � m1v1 and y2 = u2 � m2v2, with [u1 u2] =
[k1 k2]GA2

. When applying the forward mapping to y, we
get j1 = k1� (m1v1�m2v2=

p
3) and j2 = k2�2=

p
3m2v2.

The role of the condition modi�cation is therefore to ensure
that j1 = k1(modm1) and j2 = k2(modm2). This suggests
the following operations :
1. Compute w = �bj2=m2c
2. Modify j1 to j1 + (m1 �m2)w=2
Note that to deal with integers only, this algorithm could

be translated into the root coordinates of A2 [13]. Further-
more, it can be checked easily that if m1 = m2 = r the
conditional modi�cation is useless, because ki � ji(mod r).

B.2 Conditional modi�cation for Dn and RE2n

We use the same principle as for the lattice A2, and we
obtain the following sequence of operations for Dn :

1. Compute vi = �bji=mic for 2 � i � n

2. Modify j1 to j1 +
1

2

nX
i=2

(m1 �mi)vi

For RE2n the conditional modi�cation shall treat even and
odd lattice points separately. It can be implemented as
follows :
1. Compute v2n = �bj2n=m2nc
2. Compute for 2 � i < 2n

vi =

� �2b(ji � m2nv2n

2
)=mic; v2n even

�2b(ji � m2nv2n

2
)=mi � 1

2
c � 1; v2n odd



3. Modify ji to ji + (mivi �m2nv2n)=2 for 2 � i < 2n

4. Compute w0 =
2nX
i=2

(m1 �mi)vi

5. Modify j1 to j1 + w0=4 + (n � 1)m2nv2n=2 if n is odd,
otherwise to
�

j1 + w0=4 + (n� 1)m2nv2n=2; v2n even
j1 + w0=4 + (m1 + (n� 1)m2nv2n)=2; v2n odd

IV. Search in a Generalized Voronoi Code

We propose two alternative strategies for nearest-
neighbor search in generalized Voronoi codes. One strat-
egy essentially consists of projecting outliers on a relevant
Voronoi facet in a similar fashion as in [2], while the other
one exploits the lattice shell structure to sature outliers by
permutation decoding as in [5], [4].

A. Projection-based saturation

A natural approach to saturate an outlier consists of re-
ducing iteratively its radius until it falls inside the e�ec-
tive saturation boundary [3]. This solution is simple, yet
its computational complexity is in general unbounded. To
saturate outliers with a limited number of nearest-neighbor
searches in the in�nite lattice � a projection can be used.

A.1 Simpli�ed algorithm for A2

A fast algorithm using an explicit description of the trun-
cation region VA2

(0;m) + a in terms of lattice holes is il-
lustrated in Fig. 4. The complete sequence of operations
is shown in Fig. 5.

h1

h2
h

x

y

Fig. 4. Example of projection-based saturation for A2.

An outlier x is projected orthogonally on the \relevant
facet" of VA2

(0;m)+a. This facet is identi�ed by 2 scaled
and translated A2 deep holes h1 and h2. The projection
h is forced to lie in between these 2 points, and it may
be still an outlier for C(A2;m; a). In case h is an outlier
its nearest-neighbor z in A2 is translated adequately to get
the lattice point y, otherwise we set y = z.
The �nal step (translating z by �r) causes the algorithm

to be suboptimal, but it forces z to be a codevector with
no additional lattice search. An alternative would be to
search around z { for instance, by testing all 6 translations
by a minimal-norm vectors, retaining those which yield a
codevector, and selecting the closest to x { but this is more
complex.
For A2 one translation by a minimal-norm vector is

enough. However this is not true in higher dimensions

Nearest neighbor search: point x ! codevector y
1. Find the nearest neighbor z of x in A2

2. If z is a codevector (i.e. z 2 C(A2;m;a)), y = z and stop.
3. Project x on h 2 �

VA2
(0;m) + a

	
:

(i) Find the two closest lattices holes x1 and x2 to div(x�
a;m) among the set of 6 points:
(�1=2;�1=2p3) and (0;�1=p3)
(ii) h1 =mult(x1;m) + a and h2 =mult(x2;m) + a

(iii) Compute � = (x�h2)(h1�h2)
T

(h1�h2)(h1�h2)T

(iv) Saturate � such that 0 < � < 1
(v) Compute h = �h1 + (1� �)h2

4. Find the nearest neighbor z of h in �
5. If z is a codevector, y = z and stop.
6. Force z in C(A2;m;a):

(i) Compute minimal-norm vector r = x1 + x2
(ii) Set y = z� r and stop (y is a codevector).

Fig. 5. Search in a generalized Voronoi code by projection (for A2).

(e.g. for D4) where typically the e�ective saturation ex-
hibits \holes" when compared to the shaping region. In
this case two successive translations may be used to really
fall inside the e�ective overload boundary de�ned as the
surface of V�(0) + C(�;m; a).

A.2 General case (for a lattice �)

The projection-based algorithm proposed for the lattice
A2 is generalized in Fig. 6. Two variants are proposed for
projecting outliers:
� An orthogonal projection with a correction procedure to
force projected points on the relevant Voronoi facet,
� A radial projection.
The geometry of V�(0) becomes complex as far as the

dimension n increases. Therefore the use of lattice holes
after an orthogonal projection is interesting only for lattices
in low dimensions (typically up to n = 4).
The �nal step (a translation or a scaling) ensures that

the saturation algorithm will eventually come up with a
codevector. If we use a translation, we exploit the nature
of generalized Voronoi codes to save a lattice decoding com-
pared to the variant based on scaling. The value of � can
be set according tom and dmin, where dmin is the minimal
distance in �.
This general algorithm is suboptimal by de�nition. If

lattice holes are not used to force the projection h on the
relevant Voronoi facet, the algorithm requires virtually no
storage.

B. Saturation by \leaders"

The projection-based saturation is limited by the fact
that the shaping region V (0;m)+a and the e�ective over-
load boundary (i.e. the surface of V (0) + C(�;m; a)) do
not coincide. A possible solution is then to specify ex-
plicitly the codevectors which de�ne the e�ective overload
boundary in terms of spherical shells [4], [5] or ellipsoidal
shells [7], [8], [9]. The outlier saturation then involves tech-
niques which are classical in spherical or ellipsoidal lattice
quantization.
A generalized Voronoi code C(�;m; a) is then viewed

as a set of (possibly incomplete) embedded spherical or
ellipsoidal shells as depicted in Fig. 7. Each shell can be



Nearest-neighbor search: point x ! codevector y
1. Find the nearest neighbor z of x in �
2. If z is a codevector (i.e. z 2 C(�;m;a)), y = z and stop.
3. Project x on h 2 fV�(0;m) + ag (2 variants):

(i) Find closest relevant vector r to div(x� a;m) and com-
pute s =mult(r=2;m) + a

(ii) orthogonal projection:

� Project x orthogonally on the hyperplane of V�(0;m) + a

including s
� Force h on V�(0;m) + a (2 variants):
{ Replace h by the radial projection of x if h =2
fV�(0;m) + ag
{ Use an explicit description of the Voronoi facet by lattice
holes

(ii) radial projection:

Compute h = �(x� a) + a with � = (s� a)rT=(x � a)rT

4. Find the nearest neighbor z of h in �
5. If z is a codevector, y = z and stop.
6. Otherwise (2 variants):

scaling:
scale h by a factor �: h = �(h � a) + a, and goto step 4.

o�set:
set y = z+Æ(z) where Æ(z) is a low-energy lattice point (e.g.
Æ(z) = �r if r is the closest relevant vector to div(z�a;m)),
and goto step 5.

Fig. 6. Search in a generalized Voronoi code by projection (for a
general lattice �).

partitioned into a set of (possibly incomplete) permutation
codes generated by vectors referred to as \leaders" in [4],
[5]. The outmost shells can be used to derive a near-optimal
saturation. This requires to enumerate leaders as well as
their incomplete permutations.
A saturation by leaders can be designed to achieve op-

timal performance if enough leaders are selected. However
this advantage is mitigated by several observations:
� Leaders shall be picked among several spherical or el-
lipsoidal shells for good performance, because the Voronoi
shaping is not exactly spherical or ellipsoidal.
� The necessary enumeration of codevectors and the se-
lection of adequate leaders depend strongly on m. This
is problematic if we use a mixture of generalized Voronoi
codes speci�ed with di�erent modulo vectors (as in [6]),
because the saturation tables will usually di�er from one
code to another. This contrasts with the generality of a
projection-based saturation.
� The saturation by leaders is not adapted to high-
dimensional lattices (say, in dimension n > 8) and high
rates (> 2 bits per dimension) because the number of lead-
ers and incomplete permutations increases exponentially.

Fig. 7. Ellipsoidal interpretation of a Voronoi code (for A2).

V. Conclusion

We presented a class of near-ellipsoidal lattice codes with
fast indexing algorithms. The problem of designing eÆ-
cient nearest-neighbor search algorithms was investigated
and two approaches were proposed: a saturation by pro-
jection on the shaping region, and a near-spherical or near-
ellipsoidal saturation by \leaders".
The focus of the paper was on algorithms. Several as-

pects were not considered:
� General bounds on the number of lattice searches (and
possible iterations) in projection-based saturation.
� Performance evaluation for arti�cial memoryless and cor-
related Gaussian sources to estimate the shaping gain of
generalized Voronoi codes over lattice codes shaped by hy-
percubes or hyperspheres.
� Analytical approximations of the quantization distortion.
� Further generalization of indexing algorithms to relax
constraints on modulo vectors.
Note that the proposed algorithms can also be used

for standard Voronoi codes. An application to wideband
speech coding can be found in [6] where the lattices D16,
RE16 and R�16 were applied with a projection-based sat-
uration (radial projection and iterative scaling).
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