
A Fast and Stable Direct-MAP
Implementation of Turbo Decoding

Michael Bandsmer, T. Aaron Gulliver and Vijay K. Bhargava

Dept. of Electrical and Computer Engineering

University of Victoria, P.O. Box 3055, STN CSC, Victoria, BC V8R 3P6

mbandsme@ece.uvic.ca, agullive@ece.uvic.ca, bhargava@ece.uvic.ca

Abstract|Most implementations of turbo decoding make

use of the so-called \log-MAP algorithm", which has been
widely viewed in the literature to be faster and more numer-
ically stable than a \direct-MAP" implementation. In this

paper, it is demonstrated that the direct-MAP approach
can be made numerically stable, and that the iterative pro-
cess for this direct-MAP implementation is faster than the

log-MAP approach on modern microprocessors, even if a
lookup table is used to simplify the log-MAP calculations.

Furthermore, since the direct-MAP algorithm does not rely
on any approximations, the bit error rate performance of the
direct-MAP algorithm is slightly better than that produced

using the log-MAP algorithm.

I. Introduction

Turbo codes, �rst introduced by Berrou, Glavieux, and
Thitimajshima [1], are produced by the parallel concate-
nation of two separate convolutional encoders, C1 and C2.
A sequence of message bits m is encoded by convolutional
encoder C1 to produce a parity sequence p. The same mes-
sage bits are also permuted by an interleaver, and encoded
by convolutional encoder C2 to produce a second parity
sequence q. The message bits and the two parity streams
are then multiplexed to produce a codeword of the form
(m1; p1; q1;m2; p2; q2; : : :). Higher rate codes can be pro-
duced by this encoder through puncturing.

Critical to the good performance of turbo codes is the \it-
erative decoding" process. Most implementations of turbo
decoding make use of the so-called \log-MAP algorithm",
which has been widely viewed as being faster and more
numerically stable than a \direct-MAP" implementation.
In this paper, it is demonstrated that the direct-MAP ap-
proach can be made numerically stable, and that the iter-
ative process for this direct-MAP implementation is faster
than the log-MAP approach on modern microprocessors,
even if a lookup table is used to simplify the log-MAP cal-
culations. Furthermore, since the direct-MAP implemen-
tation does not rely on any table-lookup approximations,
the bit error rate performance of the direct-MAP imple-
mentation is slightly better than that produced using the
log-MAP algorithm.

In the rest of this paper, we present an algorithmic de-
scription of this direct-MAP implementation, and a com-
plexity comparison with the log-MAP algorithm.

This research is funded in part by an NSERC scholarship and an
NSERC Strategic Project Grant.

A. Decoding of turbo codes

Consider a turbo code with k = 1 input bits per trellis

section. Let mi be the ith transmitted message bit; and
let pi and qi denote the ith transmitted parity sequences
from the �rst and second decoders, respectively. Let yi =
(ym; yp; yq) denote the sequence of received signal levels
when a message/parity sequence (mi; pi; qi) is transmitted.
Furthermore, let � be the number of memory elements in
the �rst convolutional encoder, let si be the state of the
encoder at time i, for i = 0; 1; : : : ; T , and let bi be the
branch of the trellis connecting state si�1 to si. De�ne
Lin(bi) as the input bit mi for branch bi, and ��(bi) and
�+(bi) as the previous state and next state of the branch,
respectively.

For the �rst encoder, we have the following terms.

�i�1(si�1) = p(si�1jy�i) (1)

i(bi) = p(mi; yijsi�1) (2)

�i(si) = p(y+i jsi); (3)

where y�i denotes the part of the received word before the
i'th trellis section and y+i the part of the received word
after the i'th trellis section.

The term i(bi) in (2) is given by

i(bi) = p(mi) � p(ymjmi) � p(ypjmi; si�1): (4)

The �rst term of (4), p(mi), is the iterative information,
which is successively re�ned as the iterations progress. The
second term of (4), p(ymjmi), is the common information,
and is common to both encoders. The third term of (4),
p(ypjmi; si�1), is the private information for the �rst en-
coder, and will be denoted by i;pr(bi).

Using these de�nitions, the complete iterative decoding
process is summarized below.

Algorithm 1 (Turbo Decoding)

1. Setup: Use the received data and the channel char-
acteristics to calculate the common data, and the private

data for each encoder. Initialize the iterative information
p(mi) to the a priori values (usually 1=2).
2. Iterate: Repeatedly update the iterative information
p(mi) using the \modi�ed BCJR algorithm" as follows:
(a) Recursively calculate �i(si) for each state, for i =

0; 1; : : : ; T � 1, using the recursion

�0(s0) = p(s0) =

(
1 if s0 is the all-zero state;

0 otherwise.
(5)

�i(si) =
X

bij�+(bi)=si
�i�1

�
��(bi)

� � i(bi): (6)

(b) Recursively calculate �i(si) for each state, for i =
T; T � 1; : : : ; 1, using the recursion

�T (sT) =

(
1 if sT is the all-zero state;

0 otherwise.
(7)

�i(si) =
X

bi+1j��(bi+1)=si
�i+1

�
�+(bi+1)

� � i+1(bi+1): (8)
(c) Calculate the soft probabilities p(mi;y) for mi = 0
and mi = 1, for i = 1; 2; : : : ; T :

p̂(mi;y) =
X

bijLin(bi)=mi

�i�1(si�1) � i;pr(bi) � �i(si): (9)

This is called the extrinsic information (or extrinsic out-

put) from the �rst decoder.
(d) Repeat steps (a)-(c) for the second decoder, using the
interleaved extrinsic output p̂(mi;y) from the �rst decoder
as the probabilities p(emi) for the second decoder.
(e) Deinterleave the second decoder's extrinsic output,
p̂(emi;y), to get the input p(mi) for the �rst decoder.
3. Terminate: After the iterative process has re�ned
p(mi) \suÆciently", the �nal bit probabilities p(mi;y) can
be calculated as

p(mi;y) =

p̂(mi;y)�p̂(emi;y)�p(mijym)
p̂(mi;y)�p̂(emi;y)�p(mijym)+(1�p̂(mi;y))�(1�p̂(emi;y))�(1�p(mijym)) :

Note that if only the hard output is desired, this equation
can be greatly simpli�ed by observing that p(Mi = 0;y) <
1=2 (i.e. the decoded bit is a `0') if and only if

p̂(emi;y)p̂(mi;y) p(mijym)
���
mi=0

<

(1� p̂(emi;y)) (1� p̂(mi;y)) (1� p(mijym))
���
mi=0

: (10)

Note, that if i(bi) is used in step 2(c) instead of i;pr(bi),
then steps 2(a)-(c) describe the well-known BCJR algo-
rithm for the MAP decoding of a convolutional code, which
calculates the �nal bit probabilites p(mi;y) directly. This
provides a slightly more eÆcient way of calculating the �-
nal bit probabilities p(mi;y) if the extrinsic information is
not needed (e.g. for the �nal half-iteration).

II. Description of Direct-MAP Implementation

The usual approach for implementing turbo decoding is
the log-MAP algorithm, which makes use of logarithms of
probabilities (called metrics) in its calculations. This sim-
pli�es the process of probability multiplication and divi-
sion, which in the log-MAP domain are converted to the

addition and subtraction of metrics, respectively. How-
ever, the addition of probabilities, as required by (6), (8),
and (9), becomes much more complicated, requiring time-
consuming logarithm and exponentiation operations.
The direct-MAP implementation presented in the fol-

lowing sections avoids these time-consuming operations by
using probabilities directly.

A. Decoding Step 1: Setting Up

Step 1 of the turbo decoding algorithm is the calculation
of the common data p(ymjmi) and the private data for
each encoder. (From here on, we deal only with the �rst
encoder's private data, i.e. p(ypjmi; si�1). Calculations for
the second encoder are analagous.)
First, each received signal level y is converted into the

probability p(bit = 0jy), and scaled by a factor of
p
2, for

reasons discussed in Section II-B.1. For coherent detection
of BPSK signals on an AWGN channel, it can be shown
that this scaled probability is given by the expression

\scaled" p(bit = 0jy) =
p
2

1 + exp

�
�4 yp

N0

q
Eb
N0

0
� ; (11)

where Eb
N0

0
is the estimated SNR, per coded bit, at the re-

ceiver.
Scaled versions of the common data and private data are

then calculated as follows:

\scaled" p(ymjmi) =
p
2p(mijym) (12)

\scaled" p(ypjmi; si�1) =
p
2p(pijyp): (13)

B. Decoding Step 2: Iterating

The direct-MAP implementation calculates the � and �
values using (6) and (8) directly. (For numerical stability
issues regarding these calculations, see Section II-B.1.)
The extrinsic output is calculated using (9). The sum

is performed by stepping through each of the 2k � 2�
branches, adding �i�1(si�1) � i;pr(bi) ��i(si) to the appro-
priate measure of the message bit, either �(Mi = 0;y) or
�(Mi = 1;y). Once the sums have been completed, these
measures are converted to the probability p(Mi = 0;y) =

�(Mi=0;y)
�(Mi=0;y)+�(Mi=1;y)

, which is the extrinsic output required

for the next half-iteration.
Note that a more natural implementation of turbo de-

coding would use the \unmodi�ed" BCJR algorithm to cal-
culate the \complete output" p(mi;y), and then use this
complete output to calculate the extrinsic output p̂(mi;y).
This works well and is quite eÆcient for the log-MAP ap-
proach. However, for the direct-MAP approach, the extrin-
sic output is related to the complete output by the cum-
bersome relation

p̂(mi;y) =
1

1 + p(mi)
1�p(mi)

� p(mijym)
1�p(mijym) � 1�p(mi;y)

p(mi;y)

: (14)

Not only is (14) unwieldy, but also, any real implementa-
tion causes \0/0" numerical instability at high SNR's; for
example, we could have both p(mi;y) = 0 and p(mijym) =

0. Altering the form of (14) does not seem to help its sta-
bility.
Instead of applying the BCJR algorithm directly, we use

the modi�ed form of the BCJR algorithm as outlined in
Algorithm 1, to produce the extrinsic output directly. This
su�ers from no numerical instability.

B.1 Renormalization

Another potential source of numerical instability arises
from the fact that the � and � values calculated in (6)
and (8) can grow or decay exponentially, as a function of
the number of bits processed. The standard log-MAP ap-
proach is well suited to handle this, since this exponential
growth is converted to a linear growth in the log-MAP do-
main. However, with the direct-MAP implementation, it
becomes necessary to renormalize the � and � values pe-
riodically (i.e. scale them by a multiplicative constant), to
prevent overow/underow of the data type used to store
them. Since renormalization is a time-consuming process,
the question becomes, \What is the largest number of trel-
lis sections we can process before renormalizing the �'s/�'s
without incurring an overow or underow?"
Although the following is not a rigorous proof, it provides

a reasonable explanation for the worst-case (shortest) num-
ber of trellis sections we can process before renormalization
becomes necessary. The following explanation is developed
for the � calculations; the � calculations are analogous.
The approach used is to consider the \worst-case" re-

ceived words which cause the � values to decay or grow
the fastest. Let �i be the � growth rate for one trellis
section i, de�ned as

�i =

P
si
�i(si)P

si�1
�i�1(si�1)

: (15)

It will be shown that the decoding of pure noise generally
causes the �'s to grow the slowest (low �i), and the decod-
ing of a pure, noiseless, signal generally causes the �'s to
grow the fastest (high �i). Although there exist \patholog-
ical" examples which could cause a slower or faster growth
rate than the pure-noise and pure-signal cases (e.g. a trellis
section for which all p(bi;y) = 0), the probability of receiv-
ing such a pathological codeword in a real communications
environment is insigni�cant. Thus, we limit ourselves to
the most extreme real-world situations, the pure-noise and
the pure-signal cases. The expected growth rate �i for each
of these cases is derived below.
Observe that from (4), (12), and (13), the measure of

the complete value is calculated as

\scaled" i(bi) = p(mi) � [l � p(mijym)] � [l � p(pijyp)] ;
for the scale factor l =

p
2. For the more general case with

mi consisting of k input bits, and pi consisting of r parity
bits, with the scale factor l applied to each bit's measure,
this equation becomes

\scaled" i(bi) = lni � p(mi) � p(mijym) � p(pijyp); (16)

where ni = k + r is the total number of output bits (mes-
sage + parity) for that trellis section. We now derive the
optimum scale factor l for this general case.

Consider �rst the decoding of pure noise. In this case,

p(mi) � p(mijym) � 1

2k
(17)

p(pijyp) � 1

2r
; (18)

so that the expected scaled value is

\scaled" i;noise(bi) =
1

2k

�
l

2

�ni

: (19)

Substituting (19) into (15) and simplifying leads to an ex-
pected � growth rate of

�i;noise =

�
l

2

�ni

: (20)

Next, consider the decoding of a noiseless signal. In this
case, the codeword de�nes a single, unique, path through
the trellis, with only one possible branch for each trellis
section. In this case, only one state at time i� 1 (say state
s) satis�es �i�1(s) 6= 0, and only one branch b leading from
that state satis�es i(b) 6= 0. Moreover, for a noiseless sig-
nal, all probabilities in (16) are identically 1 for the branch
b (for all iterations except the �rst, for which p(mi) = 1=2).
This leads to an expected � growth rate for the \pure" sig-
nal case of

�i;pure = lni : (21)

To minimize the e�ects of the decay/growth for as long
as possible for both the pure noise and the noiseless cases,
we choose each bit's scale factor l so that the geometric
average of these worst case growth rates is 1. Thus, the
maximum growth rate will \match" the maximum decay
rate, so

P
si
�i(si) will remain within the range of the data

type used for as long as possible. Performing this geometric
average gives an optimum scale factor of

l =
p
2; (22)

and an expected bound on the � growth rate of�
1p
2

�ni

� �i �
�p

2
�ni

: (23)

In our implementation, C's double type was used. Since
the positive range of C's double type is from 2�1023 to
2+1023, (23) implies that the �'s will decay to 0 or grow
to +Inf after processing about 2064 bits of the output, in
the worst case. Note that the typical case can usually go
much further; nevertheless, our implementation renormal-
ized after every 2000 output bits, allowing plenty of room
for intermediate calculations, and for a wide variation in
the range of the individual �i(si)'s.
Note also that the extrinsic output requires the compu-

tation of the product �i�1(si�1) � i;pr(bi) � �i(si) in (9).
Thus, the entire � � � � product must also not exceed the
range of a double. This is ensured in our implementation
by keeping track of the indices i at which the �i(si)'s are
renormalized, and then renormalizing the �i(si)'s at the
same indices. This ensures that the \extreme" �'s (which
occur at indices i� 1) are always multipled by the normal-
ized �'s (at indices i), and vice versa.

III. Complexity and Comparison With Log-MAP

In the past, analysis of implementation complexity has
focused mainly on the complexity of the BCJR algorithm
(i.e. the number of operations required to calculate the �'s,
�'s, 's, and �nal output probabilities), as in [4]. However,
for turbo decoding, this approach lumps the setup time
together with the time required for one half-iteration of the
decoding algorithm, without taking into account the fact
that the setup takes place only once, while the iterative
process is usually done many times.
Thus, in this complexity analysis, we separate the time

required for setup and the time required for one half-
iteration. We do this for both the log-MAP implementation
and the direct-MAP implementation.
Our complexity analysis counts the number of mathe-

matical operations required. Addition and subtraction op-
erations are lumped collectively into the \Additions" cat-
egory, and other operations are counted separately. Table
I summarizes the number of operations required for the
direct-MAP implementation and the log-MAP implemen-
tation. Note that the overall complexity is dominated by
the 2k � 2� terms, which is the number of branches in the
trellis section. The termination step is not included in the
table, as the complexity of the terminating step is about
the same as that for any intermediate half-iteration.
The following assumptions about the implementation are

made:

� Both the log-MAP and the direct-MAP implementa-
tion precalculate measures for the partial products
i;partial(bi) = p(ymjmi)�p(ypjmi; si�1), which are required
in every iteration of the algorithm (see (4)). The cost of
computing these products is incorporated into the \Setup"
category of Table I.
� The log-MAP implementation uses a table-lookup for ad-
dition of probabilities, i.e., the complex operation Æsum =
ln(eÆ1 + eÆ2) is replaced with the simpler form

Æsum = max(Æ1; Æ2) + fc(jÆ2 � Æ1j) (24)

where fc(x) is implemented as a lookup table. (We as-
sume that the determination of max(Æ1; Æ2) obtains the
value jÆ2 � Æ1j with negligible extra work.) Note that a
table-lookup operation is much less eÆcient than an \ordi-
nary" mathematical operation, since a table-lookup has an
implied oating-point to integer conversion, which is \very
slow on all [Pentium-type] processors" [2], not to mention
the scaling and range-checking that must be done to ensure
that the lookup value is within the range contained in the
table.
� The log-MAP implementation is optimized by calculat-
ing the extrinsic bit probability from the complete bit
probability. This calculation is done using (14), which
in a log-MAP implementation becomes numerically sta-
ble due to the fact that probabilities extremely close to
0 which would have caused a \0/0" error in (14) can
still be expressed accurately as a log-likelihood ratio, e.g.

�(Mi = 1) = log p(Mi=1)
p(Mi=0)

.

� The number of operations required for renormalizing the
�'s and �'s as required by the direct-MAP implementation

TABLE I

Operations per trellis section required for turbo decoding

AWGN BPSK Direct-MAP Log-MAP
SETUP Operations Operations

Additions 2 � ni � 1 2(2ni � 1)
Multiplications ni + 2(2ni � 1) ni

Divisions ni -
\exp(a)" ops ni -

ITERATING Direct-MAP Log-MAP
Operations Operations

Additions 2 � (2k � 1)2�+ 2 � (2k � 1)2�+
2k2� + 1 6 � 2k2� + 3

Multiplications 6 � 2k2� -
Divisions 1 -

\max(a,b)" ops - 2 � (2k � 1)2� + 2k2�

Table Lookups - 2 � (2k � 1)2� + 2k2�

are considered negligible and are not included in this table,
since the renormalizations occur only once every � 2000
output bits, as described in Section II-B.1.
Table I suggests that the log-MAP approach would be

more eÆcient for small numbers of iterations, due to its
more eÆcient setup procedure, whereas the direct-MAP
approach is more eÆcient for larger numbers of iterations,
due to its more eÆcient iterative process. (We have as-
sumed that multiplication is reasonably fast, which is the
case for modern processors.) Moreover, the direct-MAP
approach performs slightly better in terms of bit error rate
than the log-MAPmethod, since the log-MAPmethod uses
a lookup table, which is only an approximation.

IV. Conclusion

In this paper, we have presented a direct-MAP imple-
mentation of turbo decoding which outperforms the classi-
cal log-MAP/table-lookup approach on modern processors,
in terms of speed and bit error rate performance.

References

[1] C. Berrou, A. Glavieux, and P. Thitimajshima, \Near Shannon
limit error-correcting coding and decoding: Turbo Codes", Proc.
ICC, pp. 1064{1070, 1993.

[2] A. Fog, \How to optimize for the Pentium family of microproces-
sors", http://www.agner.org/assem/pentopt.htm, July 3, 2000.

[3] C. Heegard and S. Wicker, Turbo Coding, Boston: Kluwer Aca-
demic Publishers, 1999.

[4] B. Vucetic and J. Yuan, Turbo Codes Principles and Applica-
tions, Boston: Kluwer Academic Publishers, 2000.

