
Yang-Kie�er Algorithms and 1-D Run-length Encoding: Compression
Performance Comparison 1

En-hui Yang Da-ke He 2

Abstract| It is �rst shown that for the class of semi-
Markov sources, the modi�ed 1-D Run-length En-
coding(RLE) algorithm outperforms any �nite-order
arithmetic coding algorithm in terms of compression
rate. This result justi�es the popular choice of RLE in
the application of video compression. We then show
that Yang-Kie�er algorithms are indeed superior to
RLE. It is proved that the worst case redundancies of
Yang-Kie�er algorithms against any RLE algorithm
among all individual sequences of length n are upper
bounded by d log log n= log n, where d is a constant.

I. Introduction

In the 1-D Run-length encoding (RLE) algorithm, the
sequence to be compressed is parsed into a sequence of
symbol-run pairs (the de�nition of symbol-run pair is left un-
til Section II), which are then encoded by Hu�man coding.
The modi�ed RLE algorithm substitutes two-step multi-level
arithmetic coding [1] for Hu�man coding and can generally
improve compression performance. RLE has been a dominat-
ing player in lossless encoding in the application of video com-
pression. As a matter of fact, the RLE algorithm is adopted
as the lossless coding method in nearly all current mainstream
video compression standards, such as MPEG 1, MPEG 2, and
DV(SMPTE 314M) [2].

However, it is believed that RLE is eÆcient only for cer-
tain types of data sequences such as those encountered in the
application of video compression. In the pursuit of more eÆ-
cient universal compression algorithms which can be applied
to a variety of applications including video compression, Yang
and Kie�er [3] recently proposed three universal compression
algorithms, which are now called by others [4, 5] Yang-Kie�er
algorithms or simply YK algorithms. It was proved in [3] that
Yang-Kie�er algorithms are all universal in the sense that they
can achieve asymptotically the entropy rate of any stationary,
ergodic source, and outperform any �nite-state data compres-
sion algorithms.

In this paper, we aim at comparing the compression per-
formance of Yang-Kie�er algorithms and that of RLE for any
individual sequences and any types of sources. In Section II,
we show that for semi-Markov sources, the modi�ed RLE al-
gorithm outperforms any �nite-order arithmetic coding algo-
rithm in terms of compression rate. As a generalization of
renewal sources [6], the class of semi-Markov sources is quite
broad; quantized coeÆcients in video compression may be ap-
proximately modeled by the model of semi-Markov sources.
This result justi�es the choice of RLE over arithmetic coding

1This work was supported in part by the Natural Sci-
ences and Engineering Research Council of Canada under Grant
RGPIN203035-98, by the Communications and Information Tech-
nology Ontario, by the Premier's Research Excellence Award and
by the Canada Research Chairs Program.

2The authors are with the Department of Electrical and Com-
puter Engineering, University of Waterloo, 200 University Av-
enue West, Waterloo, Ontario, Canada N2L 3G1. E-mails:
ehyang@bbcr.uwaterloo.ca, dhe@bbcr.uwaterloo.ca

in the application of video compression; it also implies that
the performance comparison of Yang-Kie�er algorithms and
RLE can not be derived by using �nite-order arithmetic cod-
ing as a benchmark. In Section III, we show that Yang-Kie�er
algorithms are indeed superior to RLE. Experimental results
are presented and conclusions are drawn in Section IV.

Notation: Throughout this paper, let A be our source al-
phabet with cardinality greater than or equal to 2. Let N be
the set of all positive integers. Let A� be the set of all �nite
strings drawn from A, including the empty string �, and A+

the set of all �nite strings of positive length from A. The no-
tation jAj stands for the cardinality of A, and for any x 2 A�,
jxj denotes the length of x. For any positive integer n, An

denotes the set of all sequences of length n from A. Similar
notation will be applied to other �nite sets and �nite strings
drawn from them. To avoid possible confusion, a sequence
from A is sometimes called an A-sequence.

II. RLE and Finite-Order Arithmetic Coding

In this section, we compare the compression performance
of RLE with that of �nite-order arithmetic coding for the class
of semi-Markov sources.

Associated with any sequence x = x1x2 � � �xn fromA, there
is a sequence of symbol-run pairs f(yj; rj)g

m
j=1, m � n. Each

(yj; rj) corresponds to a consecutive run of symbol yj of length
rj in x. For example, let � � �a0a1a1a1a1a2 � � �, a0; a1; a2 2 A
be a portion of sequence x; the a1's run of length 4 above
corresponds to a symbol-run pair (a1; 4).

Given a source fXig
1
i=1, there is a sequence of symbol-run

pairs f(Yj ;Rj)g1j=1, in which Yj is a A-valued random variable
and Rj is a N -valued random variable representing the run
length of Yj. We say fXig

1
i=1 is a semi-Markov source if

(1) fYjg1j=1 is an aperiodic Markov chain with transition

probability matrix
�
paiaj

�
ai;aj2A

satisfying paiai = 0

for any ai 2 A;

(2) There is a memoryless channel Q(�j�) : A! N such that
R2R3 � � �Rn � � � is the output of the channel in response
to the input Y2Y3 � � �Yn � � �; and

(3) Given Y1, R1 is independent of f(Yj ;Rj)g
1
j=2.

Given
�
paiaj

�
and Q(�j�), fXig

1
i=1 can be made stationary by

choosing an appropriate initial distribution of (Y1;R1).
A distribution Q is said to be a pseudo geometrical distri-

bution if there exists a positive integer j, and constants C > 0
and 0 � p < 1 such that Q(i) = cpi for all i � j. It is easy
to see that a semi-Markov source fXig

1
i=1 cannot be mod-

eled by any �nite-order Markov chain if there exists an a 2 A
such that Q(�ja) is not a pseudo geometrical distribution. For
such semi-Markov sources, a kth-order, 0 < k < 1, arith-
metic coding algorithm will only be suboptimal in the sense
that their best possible compression rate in bits per symbol
is H(~Xk+1j ~Xk � � � ~X1), where f ~Xig

1
i=1 is the stationary mean

of source fXig
1
i=1. H(~Xk+1j ~Xk � � � ~X1) is strictly above the

source entropy rate HX .

In the RLE algorithm, f(Yj;Rj)g
1
j=1 is encoded by us-

ing Hu�man coding. However, the RLE algorithm may not
achieve the source entropy rate either. The modi�ed RLE
algorithm uses a two-step lossless coding strategy to en-
code the sequence of symbol-run pairs (y1; r1); � � � ; (ym; rm),
1 � m � n, associated with sequence x = x1x2 � � �xn to be
compressed: 1) yj+1 of a pair (yj+1; rj+1) is �rst encoded by
using adaptive �rst-order arithmetic coding with estimated
probability pa(yj+1jyj); 2) rj+1 is then encoded by arithmetic
coding with probability qr(rj+1jyj+1). In both steps, esp. in
step 2) to handle unbounded alphabet, multi-level arithmetic
codes [1] can be employed.

Let rrla(x) be the compression rate in bits per symbol re-
sulting from using the modi�ed RLE algorithm to compress
sequence x. Let r�ka(x) be the best possible compression rate
in bits per symbol resulting from using any kth-order arith-
metic coding algorithm to compress x. The following theorem
is given without proof in this paper to conclude this section.

Theorem 1 Let X = fXig
1
i=1 be a semi-Markov source with

alphabet A. Assume that X = fXig1i=1 satis�es the property

that with probability one, there exists an a 2 A such thatQ(�ja)
is not a pseudo geometrical distribution. Then

rrla(X1X2 � � �Xn) < r�ka(X1X2 � � �Xn)

with probability one as n!1.

III. YK Algorithms and RLE

Now we compare the compression performance of YK al-
gorithms with that of any RLE algorithm. As in previous
sections, the RLE algorithm refers to the one using Hu�man
codes and the modi�ed RLE algorithm refers to the modi�ed
version using multi-level arithmetic codes. Let x 2 An be the
sequence to be compressed. Let rrle(x) be the compression
rate in bits per symbol resulting from using the RLE algo-
rithm to compress x. rrla(x) is de�ned as in Section II. On
the side of YK algorithms, for simplicity we choose the se-
quential algorithm proposed in [3]. However, all results and
derivations of this paper apply equally well to other versions
of YK algorithms. In the sequential algorithm, the greedy
grammar transform parses x into a sequence of phrases. Let
xi � � � xi+j be one of the phrases. We encode xi � � �xi+j sequen-
tially by using an arithmetic code with estimated probability
p(xi � � �xi+j). For the details of YK algorithms and greedy
grammar transform, please see [3]. Let rs(x) be the compres-
sion rate in bits per symbol resulting from using the sequential
algorithm to compress x. It is proved in [3] that the sequential
algorithm encodes x into nrs(x) bits, which are bounded by

nrs(x) � Hp(x) + 2t+ jAj; (1)

where t is the number of parsed phrases and Hp(x) denotes
the unnormalized empirical entropy of the sequence of parsed
phrases, i.e.,

Hp(x) =
X

�2S(jt)[A

c(�) log

�
t

c(�)

�
; (2)

In (2), S(jt) is the �nal variable set of the generated grammar
and c(�), for each � 2 S(jt)[A, denotes the number of times
the A-sequence represented by � appears in the sequence of

parsed phrases x1; x2 � � �xn2 ; : : : ; xnt�1+1 � � �xnt . For conve-
nience, we use ui, 1 � i � t to represent the ith parsed phrase,
i.e. ui = xni�1+1 � � �xni , where n0 = 0 and nt = n.

First we analyze the di�erence between rs(x) and rrle(x).
Let

Rs;rle
n

�
= max

x2An

�
rs(x)� rrle(x)

�
:

The quantity Rs;rle
n is called the worst case redundancy of the

sequential algorithm against the RLE algorithm. The follow-
ing theorem gives the upper bound of Rs;rle

n .

Theorem 2 There is a constant d1, which depends only on

A, such that

Rs;rle
n � d1

log log n

log n
:

Proof: Figure 1 shows an example where x is parsed
by three di�erent parsers. In Case (a), x is parsed
by the greedy grammar transform [3] into a sequence
of phrases u1; u2; � � � ; ut, where

Pt

i=1
juij = jxj = n;

in Case (b), x is parsed into a sequence of symbol-run

pairs (a1; l1); (a2; l2); � � � ; (ak; lk), where
Pk

j=1 lj = jxj; in

Case (c), x is �rst parsed into u1; u2; � � � ; ut and then each
ui, 1 � i � t is parsed into a sequence of symbol-run
pairs (ai;1; li;1); (ai;2; li;2); � � � ; (ai;ki ; li;ki), where

Pki
j=1

li;j =

juij. It is easy to see that in the worst case, every ui
breaks a run of symbols, i.e. ui's last run-length parsing
(ai;ki ; li;ki) and ui+1's �rst run-length parsing (ai+1;k1 ; li+1;k1)
are a single parsing in Case (b). For example, in Figure 1,
(aj+1; lj+1) is broken into two symbol-run pairs, (ai;3; li;3)
and (ai+1;1; li+1;1). By removing (ai;1; li;1) and (ai;ki ; li;ki) for
any 1 � i � t, we �nd that every parsed symbol-run pair in
Case (c) has an exact one-to-one match in the parsed sequence
of symbol-run pairs (a1; l1); (a2; l2); � � � ; (ak ; lk) in Case (b). In
view of these, we propose the following algorithm to encode
each ui,

Step 1: Encode juij by using the Elias' universal doubly com-
pound representation of integers [7], which will be called
the Elias code in the rest of this paper.

Step 2: Encode the �rst pair (ai;1; li;1) as follows: ai;1 is en-
coded by its binary representation; li;1 is encoded by
the Elias code.

Step 3: Encode (ai;2; li;2); : : : ; (ai;ki�1; li;ki�1) as the corre-
sponding RLE algorithm does.

Step 4: Instead of encoding (ai;ki ; li;ki), use the RLE algo-
rithm to encode (ai;ki ; l

0), where (ai;ki ; l
0), l0 � li;ki , has

the minimum codeword length among all pairs (ai;k ; l)
with l � li;ki .

(aj , lj) (aj+1 , lj+1) (aj+2 , lj+2) (aj+3 , lj+3) (aj+4 , lj+4)

ui ui+1(a)

(ai,1 , li,1) (ai,2 , li,2) (ai,3 , li,3) (ai+1,1 , li+1,1) (ai+1,2 , li+1,2) (ai+1,3 , li+1,3) (ai+1,4 , li+1,4)

(c)

(b)

Fig. 1: A segment of a sequence parsed by (a) the sequence parser
in the greedy grammar transform; (b) a run-length parser; (c) (a)
followed by (b).

By contrast, the RLE algorithm encodes x by �rst parsing
x into the sequence (a1; l1); (a2; l2); � � � ; (ak ; lk) as in Case (b).
From the discussion above, we know that the number of bits
allocated in Step 3 to encode (ai;2; li;2); : : : ; (ai;ki�1; li;ki�1)
is exactly the same as that is needed in the RLE algorithm.
In Step 4, the number of bits allocated is no more than what
the RLE algorithm uses to encode the corresponding parsed
symbol-run pair which may have been broken into two parts
in Case (c). Thus the proposed algorithm encodes x into no
more than nrrle(x) bits plus the number of bits introduced in
Step 1 and Step 2, which we shall call the overhead. We use
V (ui) to denote the overhead introduced by encoding ui using
the proposed algorithm.

To continue the proof, we need a few more de�nitions. Let
z denote a positive integer to be coded. LE(z) is de�ned as
the codeword length function of the Elias code, i.e. LE(z) =
1 + log z + 2 log (1 + log z): Similarly, we use LRLE(a; l) to
denote the codeword length function of the RLE algorithm,
where (a; l), a 2 A and l 2 N , is a symbol-run pair.

For any sequence y = y1 � � � ym 2 Am, m 2 N , we
can parse y into the following sequence of symbol-run pairs,
(b1; g1); (b2; g2); : : : ; (bk; gk); where bj 2 A, gj 2 N , 1 � j � k

and
Pk

j=1 gj = m. Now we use the proposed algorithm to
encode y = y1 � � � ym as if we are encoding a ui. Since both
the Elias code and the Hu�man code used above are pre�x
codes, it is not hard to see we have constructed an uniquely
decodable code for each y = y1 � � � ym. Thus by McMillan's
inequality [8],

1X
m=1

X
y2Am

�
2�LE(m)�log jAj�LE(g1)��

�
� 1;

where

�
�
=

k�1X
j=2

LRLE(bj ; gj) + min
g0�gk

LRLE(bk; g
0):

Let p� be the probability distribution on A+ such that for any
positive integer m and any ym = y1 � � � ym 2 Am,

p�(ym) = Q2�LE(m)�log jAj�LE(g1)��: (3)

In the above equality, the constant Q � 1 is selected so that
p� is the probability distribution on A+. Note that LE(m),
log jAj and LE(g1) are simply the overhead, and we write
V (ym) = LE(m) + log jAj + LE(g1): Since each ui is a se-
quence from A, then it makes sense to write p�(ui) for any
1 � i � t. From (3) and the discussion above, it then follows
that

tX
i=1

� log p�(ui) � nrrle(x)� t logQ+

tX
i=1

V (ui)

1)

� nrrle(x) +

tX
i=1

V (ui): (4)

In the above, the inequality 1) is due to the fact that Q � 1.
The total overhead

Pt

i=1
V (ui) can be easily bounded by,

tX
i=1

V (ui) = t log jAj+

tX
i=1

LE(juij) +

tX
i=1

LE(li;1)

1)

� t log jAj+ 2

tX
i=1

LE(juij)

� (2 + log jAj)t+ 2t log
�
n

t

�
+

4t log
h
1

t
+ log

�
n

t

�i
: (5)

The above inequality 1) is due to the fact that li;1 � juij. The
last inequality is from repeatedly applying Jensen's inequal-
ity [9, Theorem 2.6.2, pp. 25]. In view of the information
inequality[9, Theorem 2.6.3, pp. 26],

Hp(x) �

tX
i=1

� log p�(ui)

which, together with (1), (4) and (5), implies

nrs(x) � nrrle(x) + jAj+ (4 + log jAj)t+ 2t log
�
n

t

�
+

4t log
h
1

t
+ log

�
n

t

�i
: (6)

Dividing both sides of (6) by n and applying Lemma 5 in [3],
we get

Rs;rle
n � O(

1

n
) + O(

1

log n
) +O(

log log n

log n
) +O(

log log log n

log n
):

This completes the proof of Theorem 2.
Next we analyze the di�erence between rs(x) and rrla(x).

Similarly, we de�ne

Rs;rla
n

�
= max

x2An

�
rs(x)� rrla(x)

�
:

The quantity Rs;rla
n is called the worst case redundancy of the

sequential algorithm against the modi�ed RLE algorithm.

Theorem 3 There is a constant d2, which depends only on

A, such that

Rs;rla
n � d2

log log n

log n
:

Proof: In the proof of Theorem 2, the codeword length
function LRLE is used to construct p�. In the current proof, we
use instead coding probabilities to construct p�. Assume that
the exact arithmetic is used. Let pa and qr be the conditional
probability functions used by the modi�ed RLE algorithm in
Step 1) and 2) respectively.

Let ~p� be the probability distribution on A+ such that for
any positive integer m and any ym = y1 � � � ym 2 Am,

~p�(ym) = Q0jAj�1m�3pa(bkjbk�1) �

max
g0�gk

qr(g
0jbk)

k�1Y
j=2

pa(bjjbj�1)qr(gj jbj): (7)

In the above equality, the constant Q0 is selected so that ~p�

is the probability distribution on A+. The following lemma,
which is essential to the existence of ~p�, will be proved in
Appendix A.

Lemma 1 Let ym = y1 � � � ym be a sequence from

A. (b1; l1); � � � ; (bK(ym); gK(ym)), where K(ym) is a ran-

dom variable, is a sequence of symbol-run pairs associ-

ated with ym. pa, qr are conditional probability func-

tions de�ned in Section II. For convenience, we write

pa(bK(ym)jbK(ym)�1)maxg0�gK(ym)
qr(g

0jbK(ym)) as �1 andQK(ym)�1

j=2 pa(bjjbj�1qr(gj jbj) as �2. Then

X
ym2Am

�1�2 �mjAj:

In view of Lemma 1 and (7), one can easily verify that
Q0 � 1=2. A similar argument to the proof of Theorem 2 can
then lead to

Rs;rla
n � O(

1

n
) +O(

1

log n
) +O(

log log n

log n
):

This completes the proof of Theorem 3.

IV. Conclusion

In order to give some insights into practical applications
of this study, we present some experimental results on quan-
tized AC coeÆcients in DCT(Discrete Cosine Transform)-
based video compression in this �nal section.

Because MPEG 1, MPEG 2 and DV use quite similar RLE,
we pick only DV to demonstrate. The algorithms used for
comparison are: the RLE algorithm, the so-called YK algo-
rithm (i.e. the improved sequential algorithm in [3]), the Unix
Gzip based on LZ77. In all these three algorithms, AC coef-
�cients in each DCT block are zig-zag scanned and concate-
nated into one sequence. Zig-zag scanning is illustrated in [2].
In the sequence of AC coeÆcients, the last run of 0's in each
DCT block is replaced by a special symbol identi�able from
the symbols in the source alphabet A. Since the size of each
DCT block is known, the decoder knows how many number
of 0's should be �lled into a block when a special symbol is
decoded. Tables 1 and 2 list the experimental results on two
di�erent 525=60 DV video sequences. All compression rates
are expressed in terms of bits per AC coeÆcient. In each row,
the best compression rate is highlighted.

Tab. 1: Results on randomly chosen luminance frames

Cases RLE The YK Gzip

One Frame 1 1.762 1.74 2.362

One Frame 2 1.833 1.829 2.311

Five Frames 1 1.769 1.719 2.055

Five Frames 2 1.832 1.797 2.128

Ten Frames 1 1.769 1.712 2.060

Ten Frames 2 1.833 1.788 2.128

In Table 1, we can clearly see that both the RLE algorithm
and the YK algorithm beat Gzip by considerable margin in
compression rates. As we have mentioned earlier, experimen-
tal results again suggest that the sequence of quantized AC
coeÆcients in DCT-based video compression can be approx-
imated by semi-Markov sources fairly well, for which RLE
turns out to be quite eÆcient. However, the YK algorithm
is still competitive to the RLE algorithm on all frames, esp.
on color di�erence frames. In the context of universal loss-
less data compression, YK algorithms are indeed superior to
RLE algorithms when sources are not guaranteed to be semi-
Markov.

Tab. 2: Results on randomly chosen color di�erence

Cases RLE The YK

One Frame 1 0.276 0.259

One Frame 2 0.555 0.553

50 Frames 1 0.275 0.216

50 Frames 2 0.561 0.527

100 Frames 1 0.267 0.212

100 Frames 2 0.556 0.518

Appendix A

In this appendix, we prove Lemma 1. De�ne Tm
�
=minfk :Pk

j=1
gj � mg. Tm is sometimes called the stopping time.

Then

PfTm = kj(b1; g1)g =
X

ym 2 Am; K(ym) = k;
(b1; g1) is parsed

�3�2; (A1)

where �3
�
=pa(bk jbk�1)qr(ĝ � gkjbk) and qr(ĝ � gkjbk) =P

ĝ�gk
qr(ĝjbk): From (A1) and the fact that

qr(ĝ � gk jbk) � max
g0�gk

qr(g
0jbk);

we haveX
ym2Am

�1�2 � jAj+

X
(b1;g1)2A�f0;���;m�1g

1X
k=2

PfTm = kj(b1; g1)g

� mjAj:

This completes the proof of Lemma 1.

References

[1] E.-H. Yang and Y. Jia, \Universal lossless coding of sources
with large or unboundedalphabets,"Numbers, Information and
Complexity (Ingo Althofer, et al, eds.), Kluwer Academic Pub-
lishers, pp. 421{442, 2000.

[2] Proposed SMPTE STANDARD for Television|data structure
for DV-based audio data and compressed video|25 and 50
mb/s. SMPTE Journal , pages 308{324, May 1999.

[3] E.-H. Yang and J. C. Kie�er, \EÆcient universal lossless data
compression algorithms based on a greedy sequential grammar
transform|Part one: Without context models," IEEE Trans.
Inform. Theory, vol. IT-46, pp. 755{788, 2000.

[4] A. Banerji and S. Goel, \Architectures for eÆcient implementa-
tion of the YK lossless data compression algorithm," to appear
in Proc. DCC'2001(Snowbird, Utah), USA, March 27{29, 2001.

[5] A. Banerji and D. Dillon, \Lossless compression for satellite
packet networks using the YK algorithm, " to appear in Proc.
DCC'2001(Snowbird, Utah), USA, March 27{29, 2001.

[6] I. Csiszar and P. C. Shields, \Redundancy rates for renewal and
other processes," IEEE Trans. Inform. Theory, vol. IT-42, pp.
2065{2072, 1996.

[7] P. Elias, \Universal codeword sets and representations of the
integers," IEEE Trans. Inform. Theory , vol. IT-21, pp. 193{
203, March 1975.

[8] N. Abramson, Information Theory and Coding. New York:
McGraw-Hill, 1963.

[9] T. M. Cover and J. A. Thomas, Elements of Information The-
ory. New York: Wiley, 1991.

