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Abstract | We introduce a binary communication

channel with memory whose noise is generated by

a queue of length K. The queue is operated under

two modes: uniform and non-uniform. The result-

ing noise process is shown to be a stationary and er-

godic Markov source of order K. Analytic expres-

sions for the noise stationary distribution, capacity

and burst frequency of the uniform queue-based chan-

nel are presented. For the non-uniform queue-based

channel, only numerical results are provided. Next,

the capacity and burst frequency of the uniform and

non-uniform queue-based channels are compared with

those of the �nite-memory Polya contagion channel

and the Gilbert-Elliott channel.

1 Introduction

We introduce a binary communication channel with mem-
ory whose noise process is based on a �nite queue of length
K. More speci�cally, we consider the channel in two
cases: a uniform queue-based mode where we experiment
on the cells of the queue with equal probability, and a
non-uniform queue-based mode where we experiment on
the cells of the queue with di�erent probabilities.

The statistical properties of the uniform queue-based
channel are �rst investigated. The resulting channel noise
is a stationary and ergodic Markov source of order K.
Expressions for the noise stationary distribution, channel
capacity and noise burst frequency are presented in terms
ofK. For the non-uniform queue-based channel, the noise
is also stationary, ergodic and Markovian of orderK. But
we have no closed-form expression for the noise stationary
distribution; hence, only numerical results are provided.

Next, the capacity and burst frequency of the uniform and
non-uniform queue-based channels are compared with
those of the �nite-memory Polya contagion channel [1]
and the Gilbert-Elliott channel [3]. It is shown (both an-
alytically and numerically) that, surprisingly, the uniform
queue-based channel and the �nite-memory Polya conta-
gion channel have an identical block transition probability
when they have the same memory, bit error rate (BER)
and correlation coeÆcient; hence, they have identical ca-
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pacities and burst frequencies. When q1 ! 1, the non-
uniform case converges to the uniform case with memory
K = 1. The non-uniform queue-based channel has lower
burst frequencies than the uniform channel for low cor-
relation coeÆcients, and it has higher burst frequencies
for high correlation coeÆcients. Finally, the non-uniform
queue-based channel has larger capacities than the uni-
form case when the queue probability q1 <

1
K
, and it has

smaller capacities than the uniform case when q1 >
1
K
.

2 A Queue-Based Channel with Memory

In most real-world communications channels, noise dis-
tortion may produce errors in a bursty fashion; i.e., er-
rors occur in clusters or bunches separated by fairly long
error-free segments of data. This phenomenon is com-
monly know as \memory" [2]. In the quest to develop
models that adequately represent real channel behavior
and that are mathematically tractable, we present a bi-
nary channel with additive bursty noise based on a �nite
queue. It o�ers an interesting alternative to the Gilbert
model and others.

Consider the binary channel given by Yi = Xi�Zi, where
Xi, Zi, and Yi are, respectively, the i

th input, noise, and
output of the channel. We assume that the input and
noise sources are independent of each other. Consider
the following two parcels.

� Parcel 1 is a queue of length K, that initially con-
tains K balls.

- Ai1 Ai2 Ai3 � � � AiK
-

Let Aij (i is a time index referring to the ith experi-
ment), j = 1; 2; � � � ;K, indicate the color of the ball
in the corresponding cell of the queue at time i:

Aij =

�
1; if the jth cell contains a red ball,
0; if the jth cell contains a black ball:

� Parcel 2 is an urn that contains a very large number
of balls where the proportion of black balls is 1 � p
and the proportion of red balls is p, where p 2 (0; 1);
usually p� 1=2.

Let the probability of selecting parcel 1 (the queue) be "
and the probability of selecting parcel 2 (the urn) be 1�";



where " 2 (0; 1). The noise process fZig is generated by
one of the following mechanisms.

Mechanism 1 Uniform queue-based channel with

memory: By ipping a biased coin (with P (Head)="),
we select one of the 2 parcels (select the queue if Head
and the urn if Tail). Then a pointer randomly points at
a ball from the selected parcel, and identi�es its color.

Mechanism 2 Non-uniform queue-based channel

with memory: By ipping a biased coin (with
P (Head)="), we select one of the 2 parcels (select the
queue if Head and the urn if Tail). If parcel 1 (the queue)
is selected, then a pointer points at the ball in cell 1 with
probability q1 and points at the ball in cell l with prob-
ability ql = (1 � q1)=(K � 1), for l = 2; 3; � � � ;K, and
identi�es its color. If parcel 2 (the urn) is selected, a
pointer randomly points at a ball, and identi�es its color.

If the selected ball is red, we introduce a red ball in cell
1 of the queue, pushing the last ball in cell K out. If the
selected ball is black, we introduce a black ball in cell 1 of
the queue, pushing the last ball in cell K out. The noise
process fZig is then modeled as follows:

Zi =

�
1; if the ith experiment points at a red ball;
0; if the ith experiment points at a black ball:

De�nition 1 For a given mechanism, de�ne the state

of the channel to be Si
4
=(Ai1; Ai2; � � � ; AiK); the bi-

nary K�tuple in the queue after the ith experiment is
completed. Note that, in terms of the noise process,
the channel state at time i can be written as Si =
(Zi; Zi�1; � � � ; Zi�K+1), for i � K.

2.1 Uniform Queue-Based Channel

Noise Properties: We now investigate the properties of
the binary noise process fZng

1
n=1. We �rst observe that

fZng
1
n=1 is a homogeneous Markov process of order K,

since for n � K + 1,

Pr[Zn = 1jZn�1 = an�1; � � � ; Z1 = a1]

= "
an�1 + � � �+ an�K

K
+ (1� ")p

= Pr[Zn = 1jZn�1 = an�1; � � � ; Zn�K = an�K ];

where aj 2 f0; 1g, j = 1; � � � ; n:

Throughout this work, we consider the case where the
initial distribution of the Markov noise fZng is drawn ac-
cording to its stationary distribution; hence the noise pro-
cess fZng is stationary. fSng is a homogeneous Markov
process with stationary (or initial) distribution [4]

�i =
1QK

m=1(1� "m
K
)

K�1�!(i)Y
j=0

["
j

K
+ (1� ")(1� p)]

!(i)�1Y
l=0

["
l

K
+ (1� ")p];

for i = 0; 1; 2; � � � ; 2K � 1, where !(i) is the number
of \ones" in the binary representation of the decimal

integer i and
Qa

i=0(�)
4
=1, if a < 0.

Block Transition Probability: For an input block
X = [X1; � � � ; Xn] and an output block Y = [Y1; � � � ; Yn],
where n is the block length, the block transition proba-
bility of the resulting binary channel is as follows [4].

� For block length n � K,

Pr(Y = yjX = x) =
1QK

l=K�n+1(1� " l
K
)

n�d�1Y
s=0

["
s

K
+ (1� ")(1� p)]

d�1Y
t=0

["
t

K
+ (1� ")p];

where d is the number of \ones" in x� y.

� For block length n � K + 1,

Pr(Y = yjX = x) = L
nY

i=K+1

�
"
�i�1
K

+ (1� ")p

�ai

�
"
K � �i�1

K
+ (1� ")(1� p)

�1�ai
;

where L =
QK�1��K

j=0 [" j
K

+ (1 � ")(1 � p)]Q�K�1
l=0 [" l

K
+ (1 � ")p]=

QK

t=1(1 � " t
K
),
Qa

i=0(�)
4
=1,

if a < 0, �i�1 = ai�1 + � � �+ ai�K , and ai = xi � yi.

Capacity: The uniform queue-based channel with mem-
ory is a channel with stationary ergodic Markov additive
noise of memory K and BER p. The channel capacity
CK is positive and non-decreasing in K and is given by

CK = 1�

KX
i=0

�
K

i

�
Lihb

�
"
i

K
+ (1� ")p

�

where Li =
QK�1�i

j=0 [" j
K
+(1�")(1�p)];

Qi�1
l=0 ["

l
K
+(1�

")p]=
QK

m=1(1 � "m
K
); and

Qa
t=0(�)

4
=1 if a < 0, and hb(�)

is the binary entropy function.

Burst Frequency: Noise sequences of 1s between two
0s are called error bursts. The length of a burst is de�ned
as one plus the total number of 1s in the noise sequence
between two 0s. If Bn denotes the length of an error burst
starting at time n and conditioned on Zn = 0, then we
obtain the following (cf. [4]).

� For 1 � l � K � 1, where K > 1,

Pr[Bn = l] =
1

1� p
�

1QK
u=K�l(1� " u

K
)

1Y
s=0

["
s

K
+ (1� ")(1� p)]

l�2Y
t=0

["
t

K
+ (1� ")p]:



� For l = K,

Pr[Bn = K] =

K�2Y
t=0

["
t

K
+ [(1� ")p]

[(1� ")(1� p)] � [" 1
K
+ (1� ")(1� p)]

(1� p)
QK

u=1(1� " u
K
)

:

� For l � K + 1,

Pr[Bn = l] =

QK�2
t=0 [" t

K
+ [(1� ")p]

(1� p)
QK

u=1(1� " u
K
)

[(1� ")(1� p)] � ["
K � 1

K
+ (1� ")p]

�["+ (1� ")p]l�K�1 � [(1� ")(1� p)]:

2.2 Non-Uniform Queue-Based Channel

For the non-uniform queue-based channel, the noise is
also stationary, ergodic and Markovian of order K. But
we have no analytical expression for the noise stationary
distribution in terms of K; hence, only numerical results
are given for speci�c values of K.

Capacity: We take K = 3 as an example.

C3 = 1� [�

7X
i;j=0

�ipij log2 pij ];

where [pij ] is the noise transition probability matrix.

Burst Frequency: We take K = 2 as an example.

� For l = 1, Pr[Bn = l] = �0
1�p :

� For l = 2,

Pr[Bn = l] =
�2

1� p
� ["(1� q1) + (1� ")(1� p)]:

� For l � 3,

Pr[Bn = l] =
�2

1� p
� ["q1 + (1� ")p]

�["+ (1� ")p]l�3 � [(1� ")(1� p)]:

3 Comparisons with other Channels

We next compare the uniform queue-based channel with
the Polya contagion [1] and Gilbert-Elliott [3] channels in
terms of capacity and burst frequency. Similar compar-
isons are made for the non-uniform queue-based channel.

We �rst observe that it can be shown analytically [4]
that the �nite-memory contagion channel and the uni-
form queue-based channel are surprisingly identical; i.e.,
they have the same block transition probability for the
same memory K, BER and noise correlation coeÆcient
Cor. Therefore the two channels have identical capacities
and burst frequencies under the above conditions.

In Figs. 1-6, capacity and burst frequency results are pre-
sented for the four channels under various channel con-
ditions. For the Gilbert-Elliott channel the parameter
pG represents the channel BER when the channel is in a
good state, while pB denotes the BER under a bad chan-
nel state. Throughout these �gures, we let pG = 2�10�5

and pB = 0:92. For the non-uniform queue-based chan-
nel, the cell probability q1 = 0:9 was used.

We note that capacity increases as Cor increases (Figs. 1-
2) and as BER decreases (Fig. 3), as expected. For the
uniform queue-based and the contagion channels, capac-
ity also increases with K (Figs. 1-2). When Cor = 0:1,
the capacities of the uniform queue-based and contagion
channels are always larger than that of the Gilbert-Elliott
channel for any K (Fig. 1). But as Cor increases, the ca-
pacity of the Gilbert-Elliott channel grows faster. When
Cor = 0:9, the uniform queue-based channel and the con-
tagion channel have lower capacities than the Gilbert-
Elliott channel for small Ks and have higher capacities
for large Ks (Fig. 2).

It is clear from Fig. 3 and Fig. 4 that the three channels
have almost equal capacities and burst frequencies when
K = 1. This means that in these cases we can replace the
Gilbert-Elliott channel with the (less complex) uniform
queue-based channel (or the contagion channel) if our tar-
get is to achieve an error burst behavior and capacity that
are close to those of the Gilbert-Elliott channel.

The non-uniform queue-based channel has lower burst fre-
quencies than the uniform channel for low values of Cor
(Fig. 5). But it has higher burst frequencies for high val-
ues of Cor and burst length � 3 (Fig. 6). But the burst
frequencies of the non-uniform channel decreases faster
than those of the uniform channel; thus the former even-
tually has lower burst frequency when the burst length
is big enough. We notice that the non-uniform channel
has similar burst frequency as the Gilbert-Elliott chan-
nel. This is because the non-uniform channel was used
with q1 = 0:9, and as q1 ! 1 the channel converges to
the uniform case with K = 1 (see Fig. 4).

Finally, we observe (see [4]) that the non-uniform queue-
based channel has larger capacities than the uniform case
when the queue probability q1 < 1

K
, and it has smaller

capacities than the uniform case when q1 >
1
K
.
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Figure 1: Capacity vs. K for BER=0.001 and Cor=0.1.
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Figure 2: Capacity vs. K for BER=0.001 and Cor=0.9.
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Figure 3: Capacity vs. BER for K = 1 and Cor=0.1.
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Figure 4: Burst frequency vs. burst length for K = 1,
BER=0.001 and Cor=0.1.
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Figure 5: Burst frequency vs. burst length for K = 2,
BER=0.001 and Cor=0.0990991.
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Figure 6: Burst frequency vs. burst length for K = 2,
BER=0.001 and Cor=0.8999.


