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Abstract|Convolutional codes are usually de�ned as shift-
invariant linear spaces (or, more generally, groups) over
the integer discrete-time index set Z. In this work, we
generalize the notion of discrete-time index sets to in�-
nite regular trees. By viewing the in�nite regular tree
as the Cayley graph of certain free products of groups,
and taking the group generators as shift operators on the
tree vertices, we de�ne general shift-invariant group codes
and, in particular, convolutional codes on trees. Relative
to their conventional time-axis counterparts, such codes
may have larger minimum Hamming distance for the same
state-space complexity. We also introduce a generalization
of conventional tail-biting to deal with the eÆcient termi-
nation of such codes.

I. Introduction

The near capacity-achieving performance of turbo codes
and low-density parity-check codes has focused much at-
tention on codes de�ned on graphs and iterative decod-
ing (see, e.g., [1]). While the majority of work in this
area focuses on random graph constructions, some struc-
tured approaches based on Cayley graphs and Ramanujan
graphs [2{5] have been shown to yield codes with desir-
able properties, particularly at short to moderate block
lengths. Graphical code representations such as factor
graphs [6] can be used to de�ne the relationships be-
tween codeword symbols and various constraints, and the
graph itself may often be regarded as de�ning a general-
ized \time-axis" for the code. Motivated by the fact that
the sum-product algorithm is exact in cycle-free graphs
[6], we wish to study codes de�ned on in�nite cycle-free
graphs: namely, trees.

In this paper, we regard an in�nite regular tree of small
�nite degree as the Cayley graph of a free product of
certain groups. In Section III, we de�ne shift opera-
tors and shift-invariant linear codes (or, more generally,
shift-invariant group codes) on trees. In Section IV we
sketch out how the conventional algebraic descriptions
of convolutional codes may be extended to handle our
generalization. We observe that|unlike their conven-
tional counterparts|termination of convolutional codes
on trees leads to an unacceptable rate loss. To deal with
this issue, in Section V we introduce a notion of general-
ized tail-biting by introducing relations among the gen-
erators of the free product. The resulting Cayley graph
necessarily has cycles, which will strongly in
uence itera-
tive decoding performance. However, if the relations are
chosen judiciously, the girth of the graph, i.e., the length
of the shortest graph cycle, can be made large relative
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Fig. 1. A portion of a 4-regular tree.

to the group order. We begin with some mathematical
preliminaries.

II. Preliminaries

We adopt the usual terminology of graph theory (see,
e.g., [7]): a (simple) graph is a pair (V;E), where V is a
nonempty set of vertices and E is a set of edges. An edge
is an unordered pair fu; vg of vertices u; v 2 V , u 6= v.
Given a �nite positive integer k, a graph is k-regular if
the degree of each vertex is equal to k. A cycle in a graph
is a (simple) path without repeated edges from a vertex
to itself. The girth of a graph is de�ned as the length of
the shortest cycle in the graph. A graph is connected if
there is at least one path between any pair of vertices,
and cycle-free if there is at most one path between any
pair of vertices. The graph distance, d(u; v), between two
vertices u and v in a graph is equal to the length of the
shortest path from u to v, if such a path exists, where
d(u; v) = 0 if u = v.
A tree is a connected, cycle-free graph. A tree is in�-

nite if its vertex set is in�nite. In this paper we de�ne
convolutional codes over time index sets that are in�nite
k-regular trees. For example, Fig. 1 shows (a portion of)
an in�nite 4-regular tree.
We may regard an in�nite k-regular tree as the Cayley

graph (see, e.g., [8]) of certain free products of groups.
Cayley graphs have been known and used for over a cen-
tury, and are de�ned as follows. Given a group G and a
set of generators S for G, the Cayley graph C(G;S) has
vertex set G, and edge set that includes an edge fv;wg
if and only if v = ws or w = sv in G, where s 2 S is
a generator. To avoid self-loops in the Cayley graph, we
consider only generating sets S that do not contain the
group identity. When S is understood from context or
irrelevant to the discussion, we write C(G) to designate
a Cayley graph corresponding to group G.
We consider the vertex corresponding to the group

identity as the root, O, of the Cayley graph. Paths start-
ing fromO can be identi�ed with products of the elements
of S (and their inverses). Since, by construction, S gener-
ates G it is easy to see that Cayley graphs are connected.



However, Cayley graphs are not, in general, cycle-free.
Cycles in a Cayley graph starting and ending at O

correspond to nontrivial relations among the generating
elements. For example, if sn = e for some n > 2, where
s 2 S and e is the group identity, then the Cayley graph
will have cycles of length n. To avoid cycles, an element
s 2 S must either satisfy no relations at all, or satisfy a
relation of the form s2 = e. In the latter case, no cycle
is formed, since the (non-simple) path (O; s;O) traverses
only the single edge fO; sg. Thus we are led to consider
groups that are the free product of a copies of Z (each
generated by a single element) and b copies ofZ=2Z(each
generated by a single element).
Free products are de�ned, e.g., in [9, Ch. 17]. Loosely,

the free product of a collection of groups Gi, i 2 I, con-
sists of all reduced words (i.e., strings) composed of sym-
bols drawn from the groups, with string concatenation as
group operation. The empty string serves as the group
identity. Reduction of an arbitrary string to the corre-
sponding reduced word is achieved by substring substitu-
tion: any occurrence of a group identity (i.e., the identity
element from some Gi) is replaced by the empty string,
and any occurrence of two adjacent symbols from the
same groupGi is replaced by their product in that group.
Let f�1; : : : ; �ag be a set generators that satisfy no

nontrivial relations, so that h�ii �= Z, 1 � i � a. Let
f�a+1; : : : ; �a+bg be a set of involutory generators, each
satisfying the relation �2i = e, where e is the group iden-
tity, so that h�ii �= Z=2Z, a + 1 � i � a + b. Finally, let
G be the free product

G = h�1i � h�2i � � � � � h�a+bi: (1)

The set
� = f�1; : : : ; �a+bg (2)

is clearly a generating set for G.
With this setup, we have the following theorem.
Theorem 1: Let G and � be de�ned as in (1) and (2).

The Cayley graph C(G;�) is an in�nite (2a+ b)-regular
tree.
Proof: Straightforward, omitted.
In fact, the converse to this theorem is also true (see

Serre [10]).

III. Shift-invariant Group Codes

A group G acts naturally on the vertices of its Cayley
graph C(G) via left multiplication, i.e., given a group
element g and a vertex v, the map g � v = gv is a
(left) action on the vertex set. As always, for each �xed
g 2 G, the map �g de�ned as �g(v) = gv is a bijection,
i.e., a permutation, of the vertices. We can extend this
mapping to the edges of the Cayley graph by de�ning
�g(fv;wg) = fgv; gwg. It is not hard to show the result-
ing graph mapping is a graph automorphism, i.e., a graph
isomorphism from C(G) to itself. Furthermore, the map-
ping is an isometry, since for any pair of vertices u and v,
d(�g(u); �g(v)) = d(u; v). In e�ect, the map �g translates

the root O to vertex g, leaving all other neighbourhood
structure of the graph unchanged.
Let A be a nonempty alphabet, and let � = (V;E)

be a graph. By a code over A de�ned on � we mean a
nonempty subsetC ofAV , i.e., a subset of the set of words
with components indexed by V . Given a word w 2 AV

and a vertex v 2 V , we denote the component of w at v
by wv, and we often refer to v as a \time-index." When
A is a group, then AV is a group, and we usually take C
to be a subgroup, in which case C is a group code over A
de�ned on �.
Now, let � = C(G) be the Cayley graph of a group G.

We can de�ne an action of G on the set AV by setting
g � w = w0, where w0

v = wg�1v for all w 2 AV and all
g 2 G. When g is not the identity, the word g � w is said
to be a shift of the word w.
Let H be a subgroup of G, and let C be a code de�ned

on C(G). The code C is said to be H-shift-invariant if,
for all c 2 C and all h 2 H, we have h � c 2 C. If, in
particular C is H-invariant for H = G, then C is fully

shift-invariant.
Examples of fully shift-invariant codes include conven-

tional convolutional codes (G = Z) and cyclic codes of
length n (G = Z=nZ). Quasi-cyclic codes of length n are
H-shift-invariant for a proper subgroup of Z=nZ. We are
interested in de�ning shift-invariant group codes over in-
�nite k-regular trees, in which case we take G as de�ned
in (1).

IV. Algebraic Structure

We sketch now how convolutional codes on trees can be
given an algebraic structure, extending the results on con-
volutional codes presented originally in [11]. In particu-
lar, we show that the words of �nite support in a convolu-
tional code de�ned over a tree can be written (essentially)
as polynomials in \delay operators" Di corresponding to
the shifts �i de�ned in (2). Let G be de�ned as in (1).
Let � be the corresponding in�nite k-regular tree with
vertex set V . For simplicity, we will suppose that the
convolutional code is de�ned over a �nite �eld F, though
much of this formalism extends more generally to group
codes.
We take as (output) symbol alphabet A the vector

space Fn . The zero vector is denoted 0. A word w 2 AV

is said to have �nite support if it has only �nitely many
non-0 components.
If wv 6= 0, where v 2 G, then v = s1s2 : : : sn is a

reduced word, where each component sj is �ki for some
�i 2 �. De�ne D(sj) = Dk

i , where Di is an indetermi-
nate. Each such nonzero component of w contributes a
term of the form ws1:::snD(s1)D(s2) � � �D(sn) to the for-
mal sum that comprises the overall \D-transform" of w.
It is important to note that the shift operators do not
commute, i.e., if Di 6= Dj , then DiDj 6= DjDi. The re-
sulting algebra is thus fundamentally non-commutative,
except in the conventional case.
When C is fully shift-invariant, it is possible to de�ne
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Fig. 2. (a) The \impulse response" for a binary convolutional code
de�ned the in�nite 4-regular tree. (b) The corresponding factor
graph.

a basis word for C, such that each output word of �nite
support can be viewed as a linear combination of shifted
versions of the basis word. In this case, we can de�ne a
mapping from input sequences to output sequences via
an appropriate multiplication by a generator matrix. (In
the linear case, the basis word generates an ideal in a
particular ring.) Though space limitations preclude a full
exposition of these ideas, an example should help clarify
them.
Example 1: Consider a fully shift-invariant code over

the 4-regular tree containing the codeword of �nite sup-
port shown in Fig. 2(a). We assume that � = f�1; �2g.
The \D-transform" of this codeword is given by

G(D) = (10) + (11)D1 + (11)D2 + (11)D�1

1
+ (11)D�1

2
:

The convolutional code generated by G(D) is then the set
of all codewords of �nite support that can be generated
by linear combination of a �nite number of shifts of this
sequence. This set can be described as the image of the
set of D-transforms corresponding to input sequences of
�nite support under right multiplication by G(D). It is
easy to show that minimum weight of any nonzero code-
word is 9.
The notion of states (or hidden variables) for codes

on graphs, as introduced by Wiberg, et al. [12, 13], and
generalized by Forney [14] applies also to codes de�ned on
trees. When the underlying graph is cycle-free so that the
removal (\cut") of any graph disconnects the graph, the
concept of state is well-de�ned. Roughly speaking, the
state variables convey the information needed tomake the
variables on one side of the cut (the \past") conditionally
independent of the the variables on the other side of the
cut (the \future"), given the state variables.
Thus, we associate a hidden state variable with each

edge of the graph. The size of the state-space (the cardi-
nality of the domain of the state variable) at an edge for a
group code C is well known [15,16] to be the order of the
quotient group C=(CpCf ), where Cp and Cf represent,
respectively, the subgroup of codewords whose region of
support is con�ned to one (or other) side of the cut.
Example 1 (cont.): Consider the convolutional code

de�ned on the in�nite 4-regular tree of Example 1.
Fig. 2(b) shows part of state-space realization (factor
graph [6]) induced by cuts at edges. The double cir-
cles represent states variables, the empty circles represent

inputs and outputs, and the �lled squares represent the
check structure de�ned for every vertex on the tree. Since
only two possible shifts of the generator have a support
region that spans each edge, the dimension of the state-
space of is two (corresponding to four states), as stated
earlier.

V. Generalized Tail-biting

A potential drawback is the question of termination
of these codes, which can lead to a large rate loss. In
the example above, suppose the support region for input
sequences is the set of graph vertices within distance d of
O. The output bits are then con�ned to a support region
within distance d+1, and it is easy to show that the code
rate, as a function of d, is given by

R(d) =
1

2
�
(2 � 3d+1 � 1)

(2 � 3d+2 � 1)
:

The limiting rate, for large values of d, is given by 1=6,
which is a factor 1=3 smaller than the expected rate 1=2.
We will address this problem by introducing a general-

ized notion of tail-biting by allowing a systematic folding
of the tree onto itself. This will result in codes with the
expected rates.
Conventional (feedforward) convolutional encoders

with memory order m are terminated by appending a
block of m zero-valued \tail bits" to the message, result-
ing in a codeword with a state-space representation that
both starts and ends in the zero state. This method may
introduce a large rate loss if the number of trellis sections
is small.
Tail-biting [17,18] is a well-known method for avoiding

this rate loss. The encoder is started in the state equal to
the last m bits of the message. In this way, the starting
and ending states coincide, resulting in a \circular" trellis
representation. (In our terminology, the result is a code
de�ned on a Cayley graph of the cyclic group.) Tail-
biting trellis representations may have fewer states than
conventional trellis (see, e.g., [19]) representations for the
same code.
In the case of convolutional codes over trees, any �-

nite connected subgraph of the tree has a boundary with
an exponentially large number of vertices (except in the
degree-2 case) which causes large rate loss in termination.
We cope with this problem by folding the tree onto itself
in a generalization of conventional tail-biting. This can
be achieved by introducing certain relations between the
generators of the free group, thereby generating a �nite
group. We will give a few examples to illustrate that this
construction can be done systematically to lead to graphs
where the group order is relatively small and the size of
the smallest cycles is relatively large.
Example 2: Consider the k-regular tree of degree two

corresponding to the free product G of groups generated
by two involutory generators x, and y. The resulting
Cayley graph is shown in Fig. 3(a). Next, we introduce
the relation that xyx = yxy (or, equivalently, (xy)3 = e)
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Fig. 3. Three Cayley graphs: (a) of a free product; (b) of the free
product modulo a relation; (c) a more complicated example.

to form a new group. Formally, we form the quotient
G=N((xy)3), where N((xy)3) is the smallest normal sub-
group of G containing (xy)3. The group G=N has the
(tail-biting) Cayley graph shown in Fig. 3(b).

Theorem 2: Let G be a group with generating set S,
and let � = C(G;S) be its Cayley graph. Then the girth
of � is the smallest g > 2 such that there exists an x 2
S and a reduced word s1s2 � � � sg�1, sj 2 S , such that
s1s2 � � � sg�1x = e.
The girth in the above example is 6, and corresponds

to the reduced word xyxyxy = e.
Example 3: (Cyclic extensions of cyclic groups) Con-

sider the cyclic group of order q generated by an element
s of order q. Let r be an integer relatively prime to q,
and c be its multiplicative order modulo q, that is

rc � 1 mod q:

A bigger group G of order qc can be constructed by ad-
joining a new element t of order c, such that G is de�ned
by the following relations:

sq = tc = e; t�1st = sr:

The Cayley graph of the free group on the set of gener-
ators fs; tg (without the relations above) is the 4-regular
tree shown in Fig. 1. Let q = 5, and r = 2. The Cayley
graph of the group generated using the above construc-
tion is shown in Fig. 3(c).
Using the Cayley graph of the group, or the relations

between generators; it is easy to show that the girth for
this graph is 4. In general, the task is to �nd values of c
and r which will result in the largest girth and smallest
group order.
Consider a 4-regular graph �. Let n(�) and c(�) denote

the number of vertices (i.e. the group order) and the girth
of �, respectively. It is easy to show that [20]

c(�) � 2 log3

�
n(�)

2
+ 1

�
+ 1:

Here are a few typical values for girth of graphs using the
above construction:

q c r Girth Ord G Min. ord(G) needed

5 4 2 4 20 10
11 5 3 5 55 16
13 6 4 6 78 30
19 9 4 7 171 52
31 15 7 10 465 279

VI. Conclusions

We have de�ned shift-invariant group codes on in�nite
k-regular trees, viewed as the Cayley graphs of certain
free products. Shift operators correspond to the group
generators. We have illustrated that these codes in gen-
eral possess a non-commutative algebraic structure that
generalizes the conventional case. Termination of these
codes leads to a catastrophic rate loss. To deal with this
rate loss, we have proposed introducing relations in the
free products, essentially \tail-biting" the tree into the
Cayley graph of a �nite group.
Much work remains to be done, particularly to deter-

mine which generators will lead to convolutional codes
with large minimum distance for a given state complex-
ity, and which relations yield Cayley graphs with large
girth. The resulting codes should be simulated to deter-
mine their performance under iterative decoding.
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