Combinatorial Constructions of LDPC Codes

P.S. Guinand and J. Lodge
Communications Research Centre, 3701 Carling Avenue, Ottawa Canada K2H 852
(tel) 613-998-2646, (fax) 613-990-6339, e-mail: paul.guinand@cre.ca.

Abstract — In this paper we study low density parity
check (LDPC) codes where the structure of the equa-
tions arises from high girth graphs. We also discuss
two modifications, recoding and optimization of scale
factors, to the standard decoding methods for LDPC
codes.

1 Introduction

Although codes consisting of systems of relatively short
single parity check equations has been around for some
time [1] there has been a recent resurgence of interest in
these codes [2, 3]. As with Turbo codes, for high code
rates these codes tend to suffer from an “error floor /flare”
caused by low weight error events. It is possible [4, 5, 6]
to design codes of this type which have greater minimum
distance than randomly constructed codes of this type.
Previously [7, 8] we have used a class of high girth bi-
partite graphs constructed by Lazebnik et. al. [9] to
construct iteratively decodable codes whose constituent
codes were Hamming codes. In this paper we use the same
class of graphs to construct LDPC codes. Here LDPC is
being used somewhat generically to mean codes which are
defined by systems of single parity check equations which
are relatively short compared to the total size of the code.
We also describe some modified decoding strategies that
are applicable to LDPC codes in general. The first of
these involves decoding using one of the standard itera-
tive decoding algorithms and if the decoding has failed
to converge after a fixed number of iterations recoding
the codeword based upon a set of log likelihood ratios
(LLR) that indicate high reliability. The second modifi-
cation involves the use of a scaling of the extrinsic which
is iteration dependent in a Max Log APP decoder.

2 Description of the Codes and Graphs

The graphical representation of LDPC codes as bipartite
graphs was introduced by Tanner [10]. One set of ver-
tices in the graph corresponds to the bits in the code and
the other set of vertices correspond to the parity checks.
The edges of the graph indicate which bits are involved in
which parity checks. Error patterns for codes specified in
this manner correspond to subgraphs where on the vari-
able side all edges coming out of a vertex involved in the
error pattern are in the subgraph and on the check node
side, the subgraph’s nodes are all of even degree. Thus
any error pattern will involve cycles in the graph. The
notion being pursued in this paper is that by driving up

the minimum length of a cycle in the graph (the girth)
one will tend to improve the minimum distance proper-
ties of the code. Increasing the girth may also improve
the convergence properties of the decoding as indepen-
dence will be maintained for more iterations. Relatively
dense graphs of high girth have been constructed by Us-
timenko, Lazebnik and others [11, 9, 12, 13]. Their ma-
jor result was the following: For each odd m > 1 and
any prime power ¢ a bipartite, g-regular, edge transitive
graph C'D(m,q) of order at most 2qm’LmTJr2J+1 can be
constructed whose girth is at least m + 5. The graphs
with even m also tend to have good girth properties and
are used for some of the codes in this paper. These graphs
arise as a connected component of a graph D(m,q). The
D(m, q) graphs come from point-line incidence structures
which are in some sense analogues of generalized m-gons.
The incidence structure that the D(m, ¢) come from have
a structure which makes it quite simple to remove lines
and points to reduce the degrees of the vertices on the
two sides as desired. This process is described in [11].
One can also directly remove edges and vertices from the
graph to modify the degrees. These operations cannot
decrease the girth and in fact may well increase it.

3 Example Code

An example of these codes is a (2401,1372) (rate =~ .58)
code with a minimum distance of 24. By way of com-
parison a 4-D product code of similar size, (2401,1296)
(rate =~ .53) has a minimum distance of 16. It should
also be noted that the decoding complexity of the pre-
sented code is also lower as each bit is involved in only
three equations. Simulations indicate that these codes do
indeed have good error floor performance. This code is
obtained by taking a D(4,7) graph, which is connected,
and reducing the degrees of the variable nodes to 3.

4 Decoding Approaches

The baseline decoding strategy we employ to decode these
codes is enhanced Max-Log APP[14]. This is Max-Log
APP processing with a scale-factor applied to the extrin-
sic.

Because the usual soft output decoding strategies for
LDPC codes produce reliability estimates for all bits they
lend themselves to a modified decoding strategy that may
improve packet error rate performance and has some ben-
efits for evaluating the weight spectra of the codes via



simulation. In the normal off line setup of the encoding
for an (n, k) LDPC code a set of n—k linearly independent
parity check equations are determined and then reduction
is done so that n — k bits (the “parity” bits) are defined
in terms of the remaining k bits (“the information bits”).
In this modification a similar procedure to this encoding
process is carried out in the decoder with respect to a set
of ‘reliable’ bits. The first step is the normal iterative
decoding. If the code has not converged to a legitimate
codeword (i.e. some of the parity equations are not satis-
fied) the reliability estimates on the bits produced by the
decoding are sorted and, starting at the most reliable bit,
a set of k bits sufficient to span the code space is deter-
mined. Note that these may not be the & most reliable
bits but the bits that will have to be omitted because
of dependencies will tend to be amongst the less reliable
bits. Hard decisions are made on these reliable bits and a
recoding is performed using these bits. In effect the block
is coded as if the most reliable bits were the information
bits. The positions corresponding to the original informa-
tion bits are then read off. This procedure may degrade
the bit error rate performance but it always has a benefi-
cial effect on the packet error rate performance. Because
the result of this process is always a codeword this pro-
cess is of some value in evaluating the weight spectra of
a code. For various of the LDPC constructions designed
to produce high minimum distance codes, including the
codes described here and some skewcodes[5, 6], it is ex-
ceedingly rare for the standard decoding to converge to
an erroneous codeword. Thus it is difficult to find low
weight codewords by observing error patterns coming out
of the decoding. Since this recoding procedure leads to
legitimate codewords, error patterns can be determined
by comparing the transmitted bits and the recoded bits
The resulting error patterns tend to be of low weight be-
cause of the initial decoding and hence they tend to be
indicative of the low weight spectra of the code. Ob-
viously this procedure is computationally intensive as it
involves a significant matrix inversion and multiplication.
The matrix inversion being equivalent to that normally
required off line for the preparation of LDPC encoders
and the multiplication being the encoding process. In a
practical situation one might well be better off to apply
the computational effort at hand to doing more iterations
of the initial decoding. However, there do appear to be
packets for which the iterative decoding process will not
converge even after an extremely large number of itera-
tions but will be corrected by recoding. This procedure is
probably most suitable for structured as opposed to ran-
dom LDPC codes because structured LDPC codes tend
to have substructures whose reliabilities after decoding
are significantly larger than the average for bits in the
code. This is a characteristic that can be exploited [4] by
stopping processing of certain equations.

The other modification in the decoding strategy that is
applicable to the codes in this paper and more generally
to LDPC codes is the use of a scale factor which is it-

eration dependent. Frequently the best tradeoff between
decoding complexity and performance for LDPC codes is
obtained by using a Max-Log APP decoder where the ex-
trinsic has been scaled [14]. This is sometimes referred to
as enhanced Max-Log APP. Asymptotically (high SNR)
one knows that a scale factor of 1 is appropriate. But at
SNRs of interest experience has shown that a smaller scale
factor works better. For example ad hoc testing showed
that for many hypercodes and product codes a scale fac-
tor of .625 worked well. Given that the iterative decoding
process can be regarded as improving the SNR each iter-
ation a variable scale factor may give an improvement in
performance. Two approaches to determining appropri-
ate variable scale factors have been used. The first ap-
proach is to simply go the route of running simulations to
evaluate performance. To restrict the class of scale factor
vectors (one entry per iteration) attention was restricted
to scale factor ramps specifying an initial scale factor and
an associated per iteration increment. Once the scale fac-
tor reaches 1 it is saturated at 1. The other approach is
to use a form of density evolution [3]. To do the den-
sity evolution a Gaussian assumption [15] on the message
distributions was used. Because the enhanced Max-Log
APP algorithms do not preserve consistency (true APP
does) it is necessary to consider the evolution of both
the mean and the variance of the message distribution.
Doing this for a specific distribution of vertex degrees
in the graph associated to the code and a specific set of
scale factors allows the determination of threshold on the
noise variance below which arbitrarily long codes with
this vertex distribution will correctly decode under this
algorithm. Standard optimization procedures were then
applied to maximize this threshold with respect to the
scale factors used. Note that the code is not being opti-
mized here. Rather, that the decoding algorithm is being
optimized within a class of algorithms for a specific en-
semble of codes. These optimizations are typically only
applied to the first ten iterations so as to keep the dimen-
sionality of the space being optimized over tractable. The
normal procedure is to then saturate the scale factor at
1. The typical observed result of the optimization is close
to the type of scale factor ramp described above.

The variable scale factor has been used on a variety of
LDPC codes and can for some codes substantially close
the gap between single scale factor decoding and true
APP decoding. The benefit seems to be most pronounced
for irregular LDPC codes.

5 Simulation Results

All points on the curves represent at least 100 packet er-
rors except for the lowest points on the curves which may
represent as few as 20 packet errors. For all simulations
the maximum number of iterations was set to 92. Figure
1 shows the performance of a number of these codes un-
der true APP decoding. The (16807,9750) code is show-
ing distinct flaring but still a relatively steep BER. curve.



There may be some trace of flaring in the (2401,1372)
code; flaring usually manifests itself earlier in the PER
curve than in the BER curve. Figure 2 shows the per-
formance of the various decoding algorithms applied to
the (2401,1372) code described above. The loss in per-
formance of Max-Log APP relative to true APP is ap-
proximately .4 dB which is in keeping with previously
observed results. Scale factor Max-Log APP reduces this
to approximately .075 dB and scale vector Max-Log APP
reduces it to approximately .02 dB.

6 Conclusions

A class of LDPC codes based on high girth bipartite
graphs has been presented. By varying the parameters of
the graphs to increase their girth one can improve the dis-
tance properties of the code without increasing the num-
ber of parity checks in which each bit is involved. However
the size of the graph, and hence size of the code, required
grows rapidly. Some modifications to standard decod-
ing algorithms for LDPC codes have also been presented.
One of which achieves near true APP performance with
approximately Max-Log APP complexity.

References

[1] Robert G. Gallagher.  Low-density parity-check
codes. M.I.T. Press, 1963. Available from
http://justice.mit.edu/people/gallager.html/.

D. J. C. MacKay and R. M. Neal. Near Shannon
limit performance of low density parity check codes.
Electronics Letters, 32(18):1645-1646, August 1996.
Reprinted FElectronics Letters, vol 33, no 6, 13th
March 1997, p.457-458.

T. Richardson, Amin Shokrollhi, and Rudiger Ur-
banke. Design of capacity-approaching irregular low-
density parity-check codes. IEEE Trans. on Info.
Thy., 47(2):619-637, 2000.

P-P. Sauve, A. Hunt, S. Crozier, and P. Guinand.
Hyper-codes:  High-performance, low-complexity
codes. In Intnl. Symp on Turbo Codes, pages 121—
124, Brest, 2000.

[2]

J. Lodge, A. Hunt, and P. Guinand. High code
rate iteratively decodable FEC codes with low com-
plexity and high minimum distance. In Proc. Of
Queen’s University 20th Biennial Symp. On Com-
munications, pages 8-12, Kingston, 2000.

J. Lodge, A. Hunt, and P. Guinand. High code rate
iteratively decodable FEC codes for applications re-
quiring low packet error rates. In Intnl. Symp on
Turbo Codes, pages 117-120, Brest, 2000.

P. Guinand and J. Lodge. Design of generalized
product codes suitable for iterative decoding. In
Proc. of the 1996 Symp. on Info. Thy. and its Ap-
plications, Victoria BC, 1996.

[8] P. Guinand and J. Lodge. Graph theoretic construc-
tion of generalized product codes. In Proc. of the
Intnl. Symp. on Info. Thy., Ulm, Germany, 1997.

F. Lazebnik, V.A. Ustimenko, and A.J. Woldar. A
new series of dense graphs of high girth. Bull. Amer.
Math. Soc. (N.S.), 32(1):73-79, 1995.

[10] R. Michael Tanner. A recursive approach to low
complexity codes. IEEFE Trans on Info. Thy., IT-

27(5):533-547, Sept. 1981.

[11] Z. Furedi, F. Lazebnik, A. Seress, V.A. Ustimenko,
and A.J. Woldar. Graphs of prescribed girth and bi-
degree. J. of Combinatorial Theory (B), 64:228-239,

1995.

[12] F. Lazebnik and V.A. Lazebnik. New examples of
graphs without small cycles and of large size. Europ.

J. Combinatorics, 14:445-460, 1993.

[13] F. Lazebnik and V.A. Ustimenko. Explicit construc-
tion of graphs with an arbitrary girth and of large

size. Discrete Appl. Math., 60:275-284, 1995.

[14] K. Gracie, S. Crozier, and A. Hunt. Performance of
a low-complexity turbo decoder with a simple early
stopping criterion implemented on a sharc proces-
sor. In Sixth International Mobile Satellite Confer-
ence (IMSC ’99), pages 281-286, Ottawa, Canada,

June 1999. Available at www.crc.fec in .pdf format.

[15] S.-Y. Chung, T.J. Richardson, and R.L. Urbanke.
Analysis of sum-product decoding of low-density
parity-check codes using a gaussian approximation.

IEEE Trans. on Info. Thy., 47:657-671, Feb. 2001.



BER/PER

10_10 I I I I
1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

E,/N_ (dB)

Figure 1: Performance of a various codes under True APP: (2401,1372) code (x) rate =~ .5801, (14641,10680) code
(*) rate=~ .7295, (16807,9750) code (o) rate=~ .5801. Solid line indicates BER, dashed line indicates PER.

BER/PER
-
o
T

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5
E,/N_ (dB)

Figure 2: Performance of a (2401,1372) code under True APP (x), optimized scale factor vector(*), optimized fixed
scale factor (o) and standard Max-Log APP (O). Solid line indicates BER, dashed line indicates PER.



