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Abstract| A blind sequence detection algorithm based
on the innovations approach is proposed and its perfor-
mance in a slow and 
at Rayleigh fading environment is
evaluated. A comparison between the innovations and the
Singular Value Decomposition (SVD) [1] based blind se-
quence detection algorithm is also presented. Simulation
results show that the innovations blind sequence detector
has about a 3 dB gain over the SVD blind sequence detec-
tor in the fading model studied in this paper. An analysis
for various performance measures will be presented to ex-
plain the behaviour of these blind sequence detectors in
the fading environment.

I. Introduction

I
N order to have high-speed reliable communication on
a wireless channel, channel identi�cation and equal-

ization are required to combat ISI (Intersymbol Interfer-
ence). Normally, channel identi�cation and equalization
are done either by sending long training sequences or by
designing the equalizer based upon prior knowledge of
the channel. Unfortunately, in radio communications lit-
tle is known about the channel a priori and many stan-
dard adaptive detectors used in radio environments waste
some of their transmission time on a training sequence.
Many blind equalization algorithms have been proposed
and developed and as a result have made this area of re-
search very important in the recovery of signals corrupted
by unknown channel disturbances.

While a lot of work has been done in developing blind
equalization techniques, not much research has been done
in the area of blind sequence detection. In blind sequence
detection, the training period of the transmission over an
ISI channel can be reduced or eliminated and the con-
vergence rate occurs within 100 symbols. Many mobile
channels require channel identi�cation within 100 sym-
bols [1].

One approach to blind sequence detection, based on
Singular Value Decomposition (SVD), has been proposed
in [1]. It can be shown that a relationship exists [3] be-
tween the innovations process [5] and SVD. Therefore it is
theoretically possible to derive an innovations based blind
sequence detector (I-BSD). The innovations process has
found numerous applications in the area of wireless com-
munications. Yu and Pasupathy [2] have applied the in-
novations approach to Rayleigh fading channels, and have
developed a general and practical MLSE (Maximum Like-
lihood Sequence Estimation) receiver which demodulates
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a received signal recursively in a non-coherent fashion.
So far in the current literature, nobody has studied the
application of an innovations approach to blind sequence
detection (especially in the case of fading channels) or
compared it to the SVD based blind sequence detection
algorithm proposed in [1].
In this paper we aim to achieve two objectives. The

�rst objective is to present an alternative method to blind
sequence detection. We propose a blind sequence detec-
tion algorithm based on the innovations approach. One
of the main motivations of using an innovations approach
for blind sequence detection is that it has many inher-
ent advantages over SVD. The innovations approach is
simple, causal and computationally eÆcient system when
compared to SVD [3] [4]. Our approach does not require
any channel identi�cation for detection. The fundamen-
tal idea behind our methodology is to estimate the source
(deterministic) correlation without knowing the channel
characteristics, and then to use the Viterbi algorithm to
obtain the source symbols. We will show that in order to
estimate the signal correlation function, only the orthog-
onalization of the channel is necessary. The innovations
approach is used as a motivation for this orthogonaliza-
tion. Our second objective is to compare the proposed
I-BSD and the SVD based blind sequence detector (SVD-
BSD). The operation of these two detectors in a slow and

at Rayleigh fading channel will be analysed.

II. System Model and Assumptions

In this section we will brie
y outline the system model
and parameters used to develop our innovations based
blind sequence detector. This model is similar to the one
used in [1]. We can write a vector form of the received
version of a signal transmitted in a multipath Rayleigh
fading channel as

x(t) = Hs(t) + n(t) (1)

where s(t) represents the symbol sequence where only
one symbol is transmitted for every time interval Ts, H
represents the combined channel matrix consisting of the
fading parameters, pulse shaping and receiver �lters, and
n(t) is the AWGN vector. The main idea behind blind
sequence detection is to detect the information symbol
sn without knowing what the channel parameter H is.
The parameter d represents the dimension of the signal
subspace. The following assumptions will be made in our
model [1]:
(A1) The information symbol sequence sn is zero mean
and E(sis

�

j )= Æ(i� j).



(A2) Noise power nj() is zero mean for all j and
E(ni(t1)n

�

j (t2)) = �2Æ(i� j)Æ(t1 � t2).
(A3) The noise process is uncorrelated with fsng.
(A4) Channel identi�cation matrix H is an N by d ma-
trix with full column rank.

III. An Innovations Based Blind Sequence

Detector

A. Innovations and Channel Orthogonalization

The innovations process plays an important role in our
blind sequence detector. We will show that, in order to es-
timate the signal correlation function, one only has to or-
thogonalize the channel using only the observation data.
The innovations approach is used as a motivation for this
orthogonalization. Let

Rx(k) = E(x(t)x�(t� k)): (2)

From (2) and assumptions A1 to A4 we get

Rx(0) = HH
� + �2I: (3)

By the innovations approach or Cholesky factorization [5]
Rx(0) can be written as

Rx(0) = P�1D(P�)�1 (4)

where P is a lower triangular matrix composed of all or-
ders of prediction coeÆcients of x(t) and D is a diagonal
matrix where the diagonal entries are the variances of the
corresponding prediction errors. If there is no noise in (3)
(�2 = 0) we then have

HH
� = P�1D(P�)�1 (5)

(D�1=2PH)(D�1=2PH)� = I: (6)

Therefore, the transform � = D�1=2P orthogonalizes the
channel H. In otherwords, there is an orthogonal matrix
V such that �H = V. The matrix � is called the whiten-
ing �lter and its inverse L = ��1 is called the innovations
�lter of x(t). In the absence of noise, the (deterministic)
correlation of the �-transformed output

y(t) = �x(t) = Vs(t) (7)

is identical to that of the source [1]

y�(t)y(t � k) = s�(t)s(t� k): (8)

Without having any knowledge of the channel, the (de-
terministic) correlation of s(t) can be found from the re-
ceived samples.

B. Implementation of the Viterbi Algorithm

The key point of the blind sequence detection algorithm
is that the inner product (8) is preserved. The Viterbi Al-
gorithm can be used for a noisy channel to calculate the
estimated sequence which results in the minimum correla-
tion (deterministic) di�erence between the �-transformed

received sample y(t) and the estimated sequences. If we
let

r(k)y (t) = y�(t)y(t � k) (9)

r(k)s (t) = s�(t)s(t� k) (10)

=

d�1X

l=0

s�t�lst�l�k (11)

then one obtains

r(k)y (t) = r(k)s (t) + w(k)(t) (12)

where w(k)(t) represents the interfering noise components
of the observation. We can use the de�nition found in [1]
to state the optimum sequence detection as:

min
X

t

jr(k)y (t)� r(k)s (t)j2: (13)

This detection problem can be solved by applying the
Viterbi Algorithm to a Kd+k�1 state trellis for a K-QAM
constellation. The delay parameter k should be chosen
in such a manner so that the number of states in the
Viterbi Algorithm is minimized. Increasing k results in
a more complex system and as shown in [3], the added
complexities of a higher k are not very bene�cial to blind
sequence detection algorithms. Thus we set k = 1 as
being suÆcient to determine the information sequence
sn.

C. Source Correlation Estimators

The innovations process only allows us to �nd the
source correlation of s(t) from the correlation of y(t) in
the absence of noise. In many communication systems,
noise is a common phenomena and must be dealt with.
Unfortunately, the whitening �lter � is not optimum in
the presence of noise. The main goal of the I-BSD is to
obtain an optimum estimation of the source correlation

rs(t) = s�(t)s(t� 1): (14)

The Viterbi Algorithm can then be used with the esti-
mated rs(t) to recover the input symbols. We can use
the innovations process as a motivation to estimate rs(t)
from the correlation function of the transformed observa-
tions. De�ne

y(t) = �ox(t) (15)

ry(t) = y�(t)y(t � 1): (16)

The goal is to �nd an optimum �lter �o that minimizes
[1]

J(�) = E(jr(k)y (t)� r(k)s (t)j2): (17)

Solving for the optimum �lter �o for the matrix equation
that arises by minimizing (16) does not seem straight for-
ward and we were unable to �nd a closed form solution.
It turns out that the minimum variance estimate of the
source correlation for a one dimensional system (d = 1)
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Fig. 1. An innovations based blind sequence detection algorithm.

and the linear transform matrix �mv that gives the min-
imum variance estimate [6] of s(t) have the same form
which is:

�o = (D� �2PP�)1=2D�1P: (18)

Intuitively it seems that the �lter in (18) may be well
suited for an I-BSD. A schematic of the innovations ap-
proach to blind sequence detection is shown in Figure 1.

IV. Simulation Results: An Analysis of Blind

Sequence Detectors

In this section we present a new fading model di�er-
ent than the one used in [1]. Only two ray multi-path
channels were used where we assumed to have only one
receiver. The composite channel (h(t)) used in our model
can be described as

h(t) = �1p(t) + �2p(t� �) (19)

where p() was a raised cosine pulse with 90% roll o�. The
time delays � were delayed from � = 0:1T to � = 1:0T .
The time delays were purposely varied in order to see how
the blind sequence detectors behaved in di�erent \delay
spread" environments. This particular model was chosen
because we wish to see how di�erent types of blind se-
quence detectors work in an environment where we can
easily vary channel parameters and see their direct ef-
fect on the performance of blind sequence detection algo-
rithms. By keeping the model relatively simple yet real-
istic, we can gain more insight on how blind sequence de-
tection algorithms operate. The gain (�i) was generated
from a zero mean unit variance Gaussian distribution.
In Figure 2 the optimal results in terms of BER for the

fading model using the SVD-BSD and I-BSD have been
displayed. Notice that for both blind sequence detectors,
as the delay spread � increases so does the SNR for a
�xed BER. Therefore it appears that both blind sequence
detection algorithms are sensitive to changes in the delay
spread. The SVD-BSD is especially sensitive when � goes
from 0.4T to 0.5T.
We introduce a new measure known as the average cor-

relation estimation error (CER) to explain why a certain
detector works well in a particular environment. This
measure is de�ned as:

CER =

PN
i=1 jry(i)� rs(i)j

2

N
: (20)

Here, ry(i) is the ith element of the vector ry . Recall
that ry is a vector of the estimated source correlation
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Fig. 2. Varying the delay spread � for the Innovations and SVD
blind sequence detectors.
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Fig. 3. Average correlation estimation error for SVD blind sequence
detectors with varying time delay.

determined by the blind sequence detector. Similarly, rs
is a vector of the actual source correlation where rs(i) is
the ith element in rs. The parameter N is the number
of correlation entries in the vector. If we analyze the
CER for the SVD BSD where � is varied from 0.4T to
0.5T, we see that the CER increases for a particular SNR
as we increase � (see Figure 3). This increase in the
estimation error results in a BER increase since at a larger
delay spread the SVD BSD poorly estimates the source
correlation.

In Figure 2, we see that by using the I-BSD, there is
a signi�cant gain of about 3 dB when compared to the
SVD-BSD. By looking at the CER measure more insight
is gained as to why the I-BSD has a better performance.
However, in order to make an accurate comparison when
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 Comparison of Correlation Estimation Error For Innovations and SVD Based BSD
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Fig. 4. Correlation estimation error for innovations BSD (d = 1)
and SVD BSD (d = 2) with � = 0:5T .

using the CER measure, the same d (signal subspace di-
mension) should be used for both blind sequence detec-
tors. Unfortunately, the optimal d for the I-BSD is di�er-
ent than the SVD-BSD. In Figure 4, the correlation esti-
mation error is plotted for both estimators where d = 1
for the I-BSD and d = 2 for the SVD-BSD. Initially, the
I-BSD has a lower estimation error. However, when the
SNR goes above 16 dB the SVD-BSD has a lower esti-
mation error yet in terms of the BER the SVD-BSD still
has a much higher BER than the I-BSD.

As mentioned earlier, we are using di�erent signal di-
mensions (d) for these estimators and as such a fair com-
parison can not be made since both estimators are using
a di�erent trellis for their Viterbi Algorithm. However,
we can still give some explanation as to why the I-BSD
has a better performance. In Figures 5 and 6, the trellises
for d = 1 and d = 2 with the minimum error event path is
shown. If an error event does happen when d = 2, it re-
sults in more bit errors than in the case for d = 1. Notice
that when d = 1, only 1 bit is in error for the minimum
error path while for d = 2 two bits are in error. Since
the SVD-BSD has a higher d parameter, when an error
event does occur more bit errors will result. Eventhough
the SVD-BSD has a slightly lower correlation estimation
error, it is susceptible to more bit errors because it has
a higher d parameter than the I-BSD. We can conclude
that one must be careful when looking at estimation error
as an absolute performance measure. A low estimation
error does not necessarily result in a lower BER especially
in the case when di�erent trellises are used for the Viterbi
Algorithm.

V. Conclusions

An innovations approach to blind sequence detection
was studied and compared to the SVD-BSD. Each of
these techniques has its advantages and disadvantages.
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Fig. 5. Trellis with d = 1 with a minimum error event path.

State

(-1,-1)

(-1,  1)

( 1, -1) 

(1 , 1)

minimum error path

input sequence = -1 -1 -1 -1 -1 

minimum error path = -1  1  1  -1  -1 

Fig. 6. Trellis with d = 2 with a minimum error event path.

The obvious bene�ts of using the innovations approach
are that it is a causal, simpler, less expensive and com-
putationally more eÆcient system than SVD. An innova-
tions based blind sequence detector for Rayleigh fading
channels was proposed and its performance was studied
using computer simulations. Simulations were also car-
ried out to compare the error performance of both the
SVD and innovations based blind sequence detection al-
gorithms. When the two estimators were compared in a
slow and 
at fading channel, the I-BSD outperformed the
SVD-BSD. By looking at the correlation estimation error
measure and trellis diagrams for both blind sequence de-
tectors insight was gained as to explain why a certain
estimator performed better than the other for a particu-
lar environment.
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