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Abstract|Universal coding problem for the system of
Slepian and Wolf (the SW-system) has �rst been investi-
gated by Csisz�ar and K�orner. They considered the cor-
related memoryless sources, and established a universal-
ly attainable error exponent as a function of rate pair
(R1;R2) that is positive whenever (R1; R2) is an inner point
of the admissible rate region of the SW-system, which
is speci�ed depending on what source statistic is given.
However, when the sources have their memory, the uni-
versal coding problem for the SW-system remains open,
in spite of its importance. In this paper we shall deal with
such a universal coding problem for the SW-system. Es-
pecially, when the sources are ergodic Markov sources, we
show that there exists a sequence of universal code such
that the probability of decoding error vanishes whenever
(R1;R2) is an inner point of the admissible rate region.

Keywords|Slepian-Wolf coding system, universal cod-
ing, correlated Markov source, information spectrum

I. Introduction

The separate coding problem for correlated sources
has �rst been posed and investigated by Slepian and
Wolf[1]. This problem may be regarded as a substantial
starting point of multi-user information theory. On the
other hand, the problem of universal coding for the sys-
tem is not only interesting in its own right but also very
important from the standpoint of practical application-
s[2]. By universal coding we mean that neither encod-
ing nor decoding depends on particular source statistics,
while the coding performance approaches asymptotically
the same one as attained when we know the source statis-
tics underlying the system. Universal coding problem
for the system of Slepian and Wolf (the SW-system) has
�rst been investigated by Csisz�ar and K�orner[3]. They
considered the correlated memoryless sources, and es-
tablished a universally attainable error exponent as a
function of rate pair (R1; R2) that is positive whenever
(R1;R2) is an inner point of the admissible rate region
of the SW-system (the SW-region), which is speci�ed
depending on what source statistic is given. However,
when the sources have their memory, the universal cod-
ing problem for the SW-system remains open except that
Csisz�ar conjectured the existence of the universal code
for Markov sources[4, section V].
In this paper we shall deal with a universal cod-

ing problem for the SW-system. Especially, when the
sources are ergodic Markov sources, we show that there
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exists a sequence of universal code such that the prob-
ability of decoding error vanishes whenever (R1; R2) is
an inner point of the SW-region. Our result is di�eren-
t from Csisz�ar's conjecture in the following points. (1)
In [4], Csisz�ar suggested to prove the result by using
Markov-type of the sequence[5]. But, we prove the the-
orem by using the information-spectrum method devel-
oped by Han[6]. (2) We also show that such universal
code can be constructed algebraically.

II. Main Result

Let X and Y be arbitrary �nite sets. For any posi-
tive integer n, consider a correlated ergodic Markovian
sequences (Xn; Y n) = (X1X2 � � �Xn; Y1Y2 � � �Yn) that
takes values in Xn � Yn. Suppose that the joint dis-
tribution of the sequence (Xn; Y n) is described by Qn.
The Slepian-Wolf coding system can be stated as follows.
The sequences Xn and Y n emitted from the correlated
sources are separately encoded into fn(Xn) and gn(Y n),
respectively, and the decoder 'n observes them to repro-
duce the estimates of (Xn; Y n), where fn and gn are the
encoder functions de�ned by

fn : Xn !M1 = f1; 2; � � � ; jM1jg;

gn : Yn !M2 = f1; 2; � � � ; jM2jg;

and satis�es the rate constraints

1

n
log jM1j � R1 + 


1

n
log jM2j � R2 + 
;

for an arbitrary positive number 
. The decoder func-
tion 'n is de�ned by

'n :M1 �M2 ! Xn �Yn:

We call the triples (fn; gn; 'n) as a code for the SW-
system. The error probability of decoding is

Pn
e (fn; gn; 'n; Q)

= Pr('n(fn(X
n); gn(Y

n)) 6= (Xn; Y n))

=
X

(xn;yn)2Xn�Yn:
'n(fn(xn);gn(yn))6=(xn;yn)

Qn(xn; yn):

Then, the next theorem is our main result.

Theorem 1: For any ergodic Markov source with a
�xed order k and a distribution Q, there exists a se-
quence of universal codes f(fn; gn; 'n)g

1
n=1 with rate

(R1; R2) such that if (R1; R2) is within the SW-region



of the source, i.e. R1 > H(XjY ), R2 > H(Y jX) and
R1 + R2 > H(X;Y ), then the error probability of de-
coding satis�es

lim
n!1

P n
e (fn; gn; 'n;Q) = 0;

where H(X;Y ) denotes the joint entropy of the sources,
while H(XjY ) and H(Y jX) denote the conditional en-
tropies of the sources.

The next corollary is a strong version of Theorem 1.

Corollary 1: For any ergodic Markov source with a
�xed order k and a distribution Q, we can algebraical-
ly construct a universal codes (fn; gn; 'n) with rate
(R1;R2). Further, the encoding/decoding complexity
of the code is at most O(n3), and if (R1; R2) is within
the SW-region of the source, then the error probability
of decoding satis�es limn!1 Pn

e (fn; gn; 'n; Q) = 0.

III. Proof

For simplicity, we prove the theorem for ergodic
Markov source with order one (k = 1). Proof for the
higher order can be done similarly.

Step.1 Approximation of probability distribution

Let 
(Z) be a set of probability distributions of Markov
sources over a �nite alphabet Z = f1; 2; � � � ; jZjg. For a
given probability distribution Q 2 
(Z) and any posi-
tive integer n, we consider the following approximation
of Q. Let

F (i)
4
=

$
1

2
+ n2

iX
k=1

Q(k)

%
i = 1; 2; � � � ; jZj;

G(ijj)
4
=

$
1

2
+ n2

iX
k=1

Q(kjj)

%
i; j = 1; 2; � � � ; jZj;

where bxc denotes the maximum integer less than or
equal to x. It should be noted that both F (i) and G(ijj)
take integer values between 0 and n2�1. Next, we de�ne
the approximation Q̂ of Q by

Q̂(i)
4
=

F (i) � F (i� 1)

n2
i = 1; 2; � � � ; jZj;

Q̂(ijj)
4
=

G(ijj)�G(i � 1jj)

n2
i; j = 1; 2; � � � ; jZj:

Then, we have the following Lemma.

Lemma 1: For any positive integer n and Q 2 
(Z),

X
zn2Zn

jQ̂n(zn)�Qn(zn)j �
jZj

n
: (1)

Proof: By using the inequality x � 1 < bxc � x,
we have

jQ̂(i)�Q(i)j <
1

n2
i = 1; 2; � � � ; jZj:

Similarly, we also have

jQ̂(ijj)�Q(ijj)j <
1

n2
i; j = 1; 2; � � � ; jZj:

Therefore,X
zn2Zn

jQ̂n(zn)�Qn(zn)j

�
X

zn�12Zn�1

X
z02Z

fjQ̂(z0jzn�1)Q̂(zn�1)

�Q(z0jzn�1)Q̂(zn�1)j

+jQ(z0jzn�1)Q̂(zn�1)�Q(z0jzn�1)Q(zn�1)jg

�
X

zn�12Zn�1

Q̂(zn�1)
X
z02Z

jQ̂(z0jzn�1)�Q(z0jzn�1)j

+
X

zn�12Zn�1

X
z02Z

Q(z0jzn�1)jQ̂(zn�1)� Q(zn�1)j

�
jZj

n2
+

X
zn�12Zn�1

jQ(zn�1)�Q(zn�1)j:

By repeating this reduction, we have (1).

Next lemma is a direct consequence of Lemma 1.

Lemma 2: For any positive integer n, there exists a
subset Dn(Z) of 
(Z) satisfying the following two con-
ditions:
(1) jDn(Z)j � (n2 + 1)jZj+jZj

2
.

(2) For any Q 2 
(Z), there exists a Q̂ 2 Dn(Z) such
that X

zn2Zn

jQ̂(zn) �Q(zn)j <
jZj

n
:

Step.2 Mixture of Markov sources

Now, we develop an information-spectrum method pro-
posed by Han[6].

For arbitrary �xed number � > 0, de�ne 
̂(R1; R2; �)
as


̂(R1; R2; �)
4
= fQ 2 
(X � Y) : H(XjY ) < R1 � �;

H(Y jX) < R2 � �; and

H(X;Y ) < R1 +R2 � �g

Further, we de�ne D̂n(R1; R2; �) as

D̂n(R1; R2; �)
4
= 
̂(R1;R2; �) \Dn(X � Y):

Then, consider the mixture Pn
XY given by

P n
XY (x

n; yn)
4
=

1

M

X
Q2D̂n(R1;R2;�)

Qn(xn; yn);

8(xn; yn) 2 X n � Yn; (2)

with M
4
= jD̂n(R1; R2)j. From Lemma 2, we note that

M � (n2 + 1)jXjjYj+jXj
2jYj2 :



Next lemma is well-known.

Lemma 3: [7] An ergodic Markov source has exponen-
tial rates for entropy, i.e. for any Q 2 
(Z) with entropy
H and for any � > 0

X
zn2Zn:

2�n(H+�)�Q(zn)�2�n(H��)

Q(zn) � 1� 2�nr(n;�)

where r(n; �) is bounded away from zero.

From the de�nition of 
̂(R1; R2; �) and Lemma 3 for

any Q 2 D̂n(R1; R2; �), we have

Qn

(
1

n
log

1

P n
XjY (X

njY n)
� R1 � �=2

)

� Qn

(
1

n
log

1

Qn
X jY (X

njY n)
+

1

n
logM � R1 � �=2

)

� 2�nr(n;�=3)

for su�ciently large n. This implies that

Pn
XY

(
1

n
log

1

P n
XjY (X

njY n)
� R1 � �=2

)

�
1

M

X
Q2D̂n(R1;R2;�)

Qn

(
1

n
log

1

Qn
XjY (X

njY n)

+
1

n
logM � R1 � �=2

)

� 2�nr(n;�=3); (3)

for su�ciently large n. Similarly, we have

Pn
XY

(
1

n
log

1

Pn
Y jX(Y

njXn)
� R2 � �=2

)

� 2�nr(n;�=3); (4)

and

P n
XY

�
1

n
log

1

Pn
XY (X

n; Y n)
� R1 +R2 � �=2

�
� 2�nr(n;�=3); (5)

for su�ciently large n.

Step.3 Construction of codes

The mixture Pn
XY de�ned by (2) can be regarded as a

general source introduced in [6] (see also [8]). For gen-
eral source Pn

XY , we employ the following fundamental
lemma.

Lemma 4 (Miyake-Kanaya[8]) For a general source
Pn
XY , an arbitrary pair of rates (R1; R2) and any n =

1;2; � � �, there exists a sequence of code (fn; gn; 'n) such

that

Pn
e (fn; gn; 'n; P

n
XY )

� 3� 2�n
 + Pr

(
1

n
log

1

P n
XjY (X

njY n)
� R1 � 


or
1

n
log

1

P n
Y jX(Y

njXn)
� R2 � 


or
1

n
log

1

P n
XY (X

n; Y n)
� R1 +R2 � 


)
(6)

where 
 > 0 is arbitrary.

By choosing 
 = �=2 and combining this lemma with
(3),(4) and (5), we can show that there exists a code
(fn; gn; 'n) for the mixture Pn

XY such that its probabil-
ity of decoding error satis�es

P n
e (fn; gn; 'n; P

n
XY ) � 3� 2�nr(n;�=3) + 3� 2�n�=2;

for su�ciently large n.

Step.4 Proof of universality

Lastly, we show that the sequence of codes f(fn; gn; 'n)g
obtained in the previous step satis�es the assertion of
the theorem. Consider the probability distribution Q 2

̂(R1; R2; �) Then, there exists a probability distribution

Q̂ 2 D̂n(R1; R2; �) such that two conditions in Lemma
2 are satis�ed. Hence, for su�ciently large n,

Pn
e (fn; gn; 'n; Q)

=
X

(xn;yn)2Xn�Yn

'n(fn(xn);gn(yn))6=(xn;yn)

Qn(xn; yn)

�
X

(xn;yn)2Xn�Yn

'n(fn(xn);gn(yn))6=(xn;yn)

Q̂n(xn; yn)

+
X

(xn;yn)2Xn�Yn

'n(fn(xn);gn(yn))6=(xn;yn)

jQ̂n(xn; yn)�Qn(xn; yn)j

� MPn
e (fn; gn; 'n; P

n
XY )

+
X

(xn;yn)2Xn�Yn

jQ̂n(xn; yn) �Qn(xn; yn)j

� 3M2�nr(n;�=3) + 3M2�n�=2 +
jX jjYj

n

� 3(n2 + 1)jXjjYj+jXj
2jYj2(2�nr(n;�=3) + 2�n�=2)

+
jX jjYj

n
:

Therefore, for any Q 2 
̂(R1; R2; �), the probability of
decoding error vanishes.
Lastly, by choosing � > 0 depending on n such that

the following three conditions are satis�ed,

(1) lim
n!1

� = 0

(2) lim
n!1

n � =1

(3) lim
n!1

n r(n; �=3) =1



then we obtain Theorem 1.
Corollary 1 can be immediately obtained by using the

following lemma instead of Lemma 4.

Lemma 5: For a general source Pn
XY , an arbitrary

pair of rates (R1; R2) and any n = 1; 2; � � �, we can al-
gebraically construct a code (fn; gn; 'n) such that the
encoding/decoding complexity of the code is at most
O(n3), and that the probability of error satis�es

Pn
e (fn; gn; 'n; P

n
XY )

� 3�2�n
 + �Pr

(
1

n
log

1

Pn
X jY (X

njY n)
� R1 � 


or
1

n
log

1

P n
Y jX(Y

njXn)
� R2 � 


or
1

n
log

1

P n
XY (X

n; Y n)
� R1 +R2 � 


)
; (7)

where � is a constant independent of Pn
XY and 
 > 0 is

arbitrary.

The construction method of such codes is described
in Appendix. The proof of this lemma can be done in a
manner similar to [9, Theorem 3].

Appendix

In what follows, X and Y are supposed to be Ga-
lois �elds, and jX j and jYj are assumed to be powers
of two. Otherwise, we add some dummy symbols with
zero probability. Further, Xm and Ym are considered as
the structure of the extended �eld of X and Y , respec-
tively. For any positive integer n and k1(� n), de�ne
the decomposition n = k1t1 +m1 with t1 = dn=k1e � 1
and 1 � m1 � k1. Then, x 2 X n can be rewritten
as x = (x0; � � � ; xt1), where x0 2 Xm1 and xi 2 X k1 ,
i = 1; � � � ; t1. To any choice of elements 
i 2 X k1 , i =
1; � � � ; t1, we associate the linear encoder f : X n ! X k1

given by

f (x) =  (x0) +
t1X
i=1


ixi;

and de�ne C(n; k1;X ) to be the set of all such en-
coders, where  (z) denotes the k1-dimensional vector
formed by adding k1�m1 zeros after them1-dimensional
components of z. In a similar manner, we also de�ne
the set C(n; k2;Y) of encoders g : Yn ! Yk2 with
t2 = dn=k2e � 1.

Encoding scheme: Denote all pairs of mapping in
C(n; k1;X ) � C(n; k2;Y) as (fi; gi), i = 1; � � � ; N with
N = jX jk1t1 � jYjk2t2 . Then, consider the following �xed
length code with block length No = nN , where n is an
even integer.
1) A given pair (x; y) 2 XnN�YnN is �rst represented in

the form x = (x1; � � � ; xN) with xi 2 Xn, i = 1; � � � ; N
and y = (y1; � � � ; yN ) with yi 2 Yn, i = 1; � � � ; N .
Then encode each pairs (xi; yi) into (fi(xi); gi(yi)) 2
X k1 �Yk2 for i = 1; � � � ; N .

2) Encode x and y into H1x 2 Xn(N�K1) and H2y 2
Yn(N�K2), where H1 (resp. H2) denotes the par-
ity check matrices of the algebraic geometry code
CH(N;K1; D1) over Xn (resp. CH(N;K2; D2) over
Yn) constructed from a generalized Hermitian curve
[10].

The encoded sequences consist of N pairs of
(fi(xi); gi(yi)) and a pair of (H1x;H2y), and this
corresponds to the overall encoders F : XNo !
X k1N+n(N�K1) and G : YNo ! Yk2N+n(N�K2). 2

Further, let us de�ne rates of codes by

r1
4
= (k1=n) log jX j; r2

4
= (k2=n) log jYj;

~r1
4
= (1�K1=N) log jX j; ~r2

4
= (1 �K2=N) log jYj;

then the overall rates of the proposed linear encoders F
and G are given by R1 = r1 + ~r1 and R2 = r2 + ~r2,
respectively.

Decoding scheme:

1) For i = 1; � � � ; N , decode (fi(xi); gi(yi)) by using the
method proposed by Miyake and Kanaya [8, Section
4.1], and obtain the estimate (x̂i; ŷi) 2 X n � Yn.
Then, the overall estimate (x̂; ŷ) 2 XnN � YnN

of the encoded sequence can be described as x̂ =
(x̂1; � � � ; x̂N) and ŷ = (ŷ1; � � � ; ŷN).

2) From two syndromes s1
4
= H1x�H1x̂ and s2

4
= H2y�

H2 ŷ, �nd the vectors e1 2 XnN and e2 2 YnN such
that H1e1 = s1 and H2e2 = s2. These vectors can
be obtained e�ciently by using the error correcting
procedure of algebraic geometry code. Then, (~x; ~y) =
(x̂ � e1; ŷ � e2) is the �nal estimate of the encoded
pair. 2
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