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Abstract— Universal coding problem for the system of
Slepian and Wolf (the SW-system) has first been investi-
gated by Csiszar and Korner. They considered the cor-
related memoryless sources, and established a universal-
ly attainable error exponent as a function of rate pair
(R1,R2) that is positive whenever (R;, R2) is an inner point
of the admissible rate region of the SW-system, which
is specified depending on what source statistic is given.
However, when the sources have their memory, the uni-
versal coding problem for the SW-system remains open,
in spite of its importance. In this paper we shall deal with
such a universal coding problem for the SW-system. Es-
pecially, when the sources are ergodic Markov sources, we
show that there exists a sequence of universal code such
that the probability of decoding error vanishes whenever
(R1,R2) is an inner point of the admissible rate region.

Keywords— Slepian-Wolf coding system, universal cod-
ing, correlated Markov source, information spectrum

I. INTRODUCTION

The separate coding problem for correlated sources
has first been posed and investigated by Slepian and
Wolf[1]. This problem may be regarded as a substantial
starting point of multi-user information theory. On the
other hand, the problem of universal coding for the sys-
tem is not only interesting in its own right but also very
important from the standpoint of practical application-
s[2]. By universal coding we mean that neither encod-
ing nor decoding depends on particular source statistics,
while the coding performance approaches asymptotically
the same one as attained when we know the source statis-
tics underlying the system. Universal coding problem
for the system of Slepian and Wolf (the SW-system) has
first been investigated by Csiszdr and Korner[3]. They
considered the correlated memoryless sources, and es-
tablished a universally attainable error exponent as a
function of rate pair (Rj, Rz) that is positive whenever
(R1, Rs) is an inner point of the admissible rate region
of the SW-system (the SW-region), which is specified
depending on what source statistic is given. However,
when the sources have their memory, the universal cod-
ing problem for the SW-system remains open except that
Csiszdr conjectured the existence of the universal code
for Markov sources[4, section V].

In this paper we shall deal with a universal cod-
ing problem for the SW-system. Especially, when the
sources are ergodic Markov sources, we show that there
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exists a sequence of universal code such that the prob-
ability of decoding error vanishes whenever (Ry, Ry) is
an inner point of the SW-region. Our result is differen-
t from Csiszar’s conjecture in the following points. (1)
In [4], Csiszdr suggested to prove the result by using
Markov-type of the sequence[5]. But, we prove the the-
orem by using the information-spectrum method devel-
oped by Han[6]. (2) We also show that such universal
code can be constructed algebraically.

II. MAIN RESULT

Let X and Y be arbitrary finite sets. For any posi-
tive integer n, consider a correlated ergodic Markovian
sequences (X", Y") = (X1X2---Xpn,Y1Y2---Y,) that
takes values in A™ x Y™. Suppose that the joint dis-
tribution of the sequence (X™,Y™) is described by Q™.
The Slepian-Wolf coding system can be stated as follows.
The sequences X™ and Y™ emitted from the correlated
sources are separately encoded into f,,(X™) and g,(Y™),
respectively, and the decoder ¢,, observes them to repro-
duce the estimates of (X™,Y™), where f,, and g, are the
encoder functions defined by

fn:Xn_>M1 :{1727"'7|M1|}7
gn:yn%MQI{laza"'JMﬂ}a

and satisfies the rate constraints
1 1
;10g|M1|§R1+7 ;log|M2|§R2—|—~y,

for an arbitrary positive number 4. The decoder func-
tion ¢, is defined by

Pn i M1 X Mg — X" x Y.

We call the triples (fn,gn,%n) as a code for the SW-
system. The error probability of decoding is

P:'(fnagna Prns Q)
= Pr(pn(fa(X™), g2 (Y™) # (X", Y ™))
= > Q™ (=", y").

(27, y")eaxn XY™
en(fn(=™),gn(y™))#£(=",y™)

Then, the next theorem is our main result.

Theorem I: For any ergodic Markov source with a
fixed order k£ and a distribution @, there exists a se-
quence of universal codes {(fn,gn,Pn)}s>, with rate

(R1, Ra) such that if (Ry, Ry) is within the SW-region



of the source, i.e. Ry > H(X|Y), Ry > H(Y|X) and
Ri + Ry > H(X,Y), then the error probability of de-
coding satisfies

nh—>n;o P(:L(fnagnasonaQ) — 07

where H(X,Y) denotes the joint entropy of the sources,
while H(X|Y') and H(Y|X) denote the conditional en-
tropies of the sources.

The next corollary is a strong version of Theorem 1.

Corollary 1: For any ergodic Markov source with a
fixed order k& and a distribution ¢, we can algebraical-
ly construct a universal codes (fa,9gn,¢n) with rate
(R1, Ra). Further, the encoding/decoding complexity
of the code is at most O(n?®), and if (Ry, Ry) is within
the SW-region of the source, then the error probability
of decoding satisfies limy,_, o P2 (fn, gn, ¢n, @) = 0.

III. ProOOF

For simplicity, we prove the theorem for ergodic
Markov source with order one (kK = 1). Proof for the
higher order can be done similarly.

Step.1 Approzimation of probability distribution
Let ©(Z) be a set of probability distributions of Markov
sources over a finite alphabet Z = {1,2,---,|Z|}. For a
given probability distribution @ € £2(Z) and any posi-
tive integer n, we consider the following approximation

of Q. Let

F(Z) é \‘%+n2ZQ(k)J i:1,2,---,|Z|,
k=1
1 i
G(Z|J) = \‘E—i_nQZQ(kU)J i,j:1,2,---,|3|,
k=1

where |z| denotes the maximum integer less than or
equal to z. It should be noted that both F () and G(i|5)
take integer values between 0 and n? —1. Next, we define
the approximation Q of Q by

F(i)— F(i— 1)
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(e

i=1,2,
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Then, we have the following Lemma.
Lemma 1: For any positive integer n and Q € Q(Z2),

Ed}

n

Yo 1R - @)l <

zneZn

(1)

Proof: By using the inequality ¢ — 1 < |z] < z
we have
2]

i=1,2,--

06) - QW) < =

Similarly, we also have

AL . 1

|Q(Z|J) - Q(Z|J)| < ) ,j=12,---, |Z|
Therefore,
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By repeating this reduction, we have (1). [ |

Next lemma is a direct consequence of Lemma 1.

Lemma 2: For any positive integer n, there exists a
subset D, (Z) of Q(Z) satisfying the following two con-
ditions:

(1) [Dn(2)] < (n + 1)I2HH2F,

(2) For any Q € 2(Z), there exists a Qe D, (Z) such

that
121

n

Y 1eGE™ - QEMI <

zneZn

Step.2 Murture of Markov sources
Now, we develop an information-spectrum method pro-
posed by Han([6].

For arbitrary fixed number § > 0, define Q(Rh Ry, 4)

as

Q(R1,R2,8) 2 {Qe QX xY): HX|Y) < Ry — 6,

H(Y|X)< Ry — 4, and
H(X,Y) <R1—|—R2—5}

Further, we define ﬁn(Rl, R,,0) as
ﬁn(Rl, R, 5) é Q(Rl, R, 5) N Dn(X X y)

Then, consider the mixture Pgy given by

PXY(a: Y ) = M Z Q (:13 Y )7
QcD,(R1,R1,5)
V(z™, y™) € X" x Y, (2)
with M 2 |D | Dy (R1, R2)|. From Lemma 2, we note that

M < (n?+ 1)|X||J’|+|X|2|J’|2_



Next lemma is well-known. that

Lemma 3: [7] An ergodic Markov source has exponen- P*(fny Gn, on, Piy)

tial rates for entropy, i.e. for any @ € Q(Z) with entropy 1 1
H and for any € > 0 < 3x27™ 4Pk —log—————— >Ry — ¥
= n 8P (XnYm) <
LA 2—nr(n,e)
;'gz:m Q(z ) B or _log pr Y| X" Z R2 -7
a=n(H+e) <o on)ga=n(H—) n Y|X( |X™)

where 7(n, €) is bounded away from zero. or %log W > Ri + Ry — 7} (6)

From the definition of Q(Rl, R3,4) and Lemma 3 for

any Q € ﬁn(Rla Rs, 8), we have where v > 0 is arbitrary.
By choosing ¥ = §/2 and combining this lemma with
w1l 1 (3),(4) and (5), we can show that there exists a code
Q {; log P}E|Y(Xn|yn) > Ri — 5/2} (frs Gn, @n) for the mixture P, such that its probabil-

ity of decoding error satisfies

L1 1 1
=4 {El‘)g Gy (07 8 2 P 5/2} P2 (Fnsus oy PRy) €8x 27 019) 4 g gnd/,
< 27nr(md/3) for sufficiently large n.

Step.4 Proof of uniwersality
Lastly, we show that the sequence of codes {(fn, gn, ¢n)}
obtained in the previous step satisfies the assertion of
(;{ ) > Ry — 5/2} the theorem. Consider the probability distribution @ €

1
Py § —log -, A . - T
n PX|Y (R, Ra, ) Then, there exists a probability distribution

for sufficiently large n. This implies that

1 1 1 Q € ﬁn(Rl, R, 8) such that two conditions in Lemma
< I ot (Z: : Q”{ . log —’]}|Y(Xn|Y”) 2 are satisfied. Hence, for sufficiently large =,
€Dn(R1,R2, n
Pe (fnagna Pn,y Q)
]. n n n
—|——10gM2R1—5/2} = Z Q (a: 7y)
" (e an )R e,y
< 2—’"/"(71,6/3), (3) Pnllin s dn Y Y .
> < Z Qn(mn, yn)
for sufficiently large n. Similarly, we have o i
1 . + > Q" (", ") — Q" (", y™)|
Py 18 ey = R 07 ) M;:Ja%i’;zi;‘nﬁ%,yn)
< 2—nr(n,6/3), (4) = e (fnvgnvs"nv AXY)
D DR A G B e Gl
and (z™ym)exmxyn
X
1 < 3M2—nr(n,6/3) + 3M2—n6/2 + | ||y|
no 7 Py (X7, YT) < 3(n? 4 1) XIPHELIVE (g-nr(nd/3) | g-nb/2)

< 2—n1‘(n,6/3) (5)
= ’ X
NES

for sufficiently large n. n

Therefore, for any @ € Q(Rl, R3,4d), the probability of
decoding error vanishes.

Lastly, by choosing é > 0 depending on n such that
the following three conditions are satisfied,

Step.8 Construction of codes
The mixture P%y defined by (2) can be regarded as a
general source introduced in [6] (see also [8]). For gen-
eral source P%y, we employ the following fundamental

lemma. (1) lim § =0
n—r oo
Lemma 4 (Miyake-Kanaya[8]) For a general source (2) lim né = oo
P%, an arbitrary pair of rates (R1, Ry) and any n = nreo

1,2, .-, there exists a sequence of code (fn, gn, ¥n) such (3) nll}n;o nr(n,8/3) = oo



then we obtain Theorem 1.
Corollary 1 can be immediately obtained by using the
following lemma instead of Lemma 4.

Lemma 5: For a general source P%y, an arbitrary
pair of rates (Rq, R2) and any n = 1,2,---, we can al-
gebraically construct a code (f,, gn, ¢n) such that the
encoding/decoding complexity of the code is at most
O(n?), and that the probability of error satisfies

Pg(fnagna Pns P]?Y)

1
< 3a27™ + aPr{ —log ———————~ > Ry — v
{n PXlY(X”|Y”)
1
or —log ———————~ > Ry — v
n PYlX(Y”|X”)

1 1
—log ——————~ > R1+ Ry — 7
where « is a constant independent of P¢, and v > 0 is
arbitrary.

The construction method of such codes is described
in Appendix. The proof of this lemma can be done in a
manner similar to [9, Theorem 3].

APPENDIX

In what follows, & and Y are supposed to be Ga-
lois fields, and |X| and |Y| are assumed to be powers
of two. Otherwise, we add some dummy symbols with
zero probability. Further, XY™ and )™ are considered as
the structure of the extended field of X and Y, respec-
tively. For any positive integer n and k;(< n), define
the decomposition n = k1t + mq with ¢; = [n/k1] — 1
and 1 < my < ki;. Then, € X™ can be rewritten

as ¢ = (zg, -+, ®,), where zgp € A™ and z; € &A%,
i=1,---,t;. To any choice of elements v; € X*1, i =
1,---,t1, we associate the linear encoder f : A™ — X%
given by

Fz) = ¥(z0) + Y vis,
=1

and define C(n,k1,X) to be the set of all such en-
coders, where 1(z) denotes the ki-dimensional vector
formed by adding k; —m; zeros after the m;-dimensional
components of z. In a similar manner, we also define
the set C(n, k3, ) of encoders g : Y* — Y*2 with
t2 = |—n/k2-| - 1.

Encoding scheme: Denote all pairs of mapping in

C(n,k1,X) x C(n,k2,Y) as (fi,g9:), ¢ = 1,---, N with

N = |x|fat2 . |Y|*2t2, Then, consider the following fixed

length code with block length N, = nN, where n is an

even integer.

1) A given pair (z,y) € X™N x YV is first represented in
the form ¢ = (#1,---,zy) withe; € ™, i=1,--- | N
and Yy = (yla"'ayN) with v €Y', i=1,---,N.
Then encode each pairs (u;, y;) into (fi(z:), g:(v:)) €
Xk x Yk fori=1,.--,N.

2) Encode z and y into Hiz € X*(V-K1) and Hay €
Y(N-K2)  where H; (resp. Hs) denotes the par-
ity check matrices of the algebraic geometry code
Cu(N, K1, D1) over X™ (resp. Cu(N, K2, D3) over
Y™) constructed from a generalized Hermitian curve
10].

Th[e ]encoded sequences consist of N pairs of

(fi(z:),9:(y:)) and a pair of (Hyz,H,y), and this

corresponds to the overall encoders F aNo

Xk1N+n(N—K1) and G : yNO — yk2N+n(N—K2)‘ O

Further, let us define rates of codes by

A A
1 = (k1/n)log|X|, 13 = (ka/n)log ||,
. A . A
T1:(1—K1/N)10g|)(|, r2:(1—K2/N)log|y|,

then the overall rates of the proposed linear encoders F
and G are given by Ry = 7, + #; and Ry = 79 + 79,
respectively.

Decoding scheme:

1) For i =1,---, N, decode (f;(x;),9:(v)) by using the
method proposed by Miyake and Kanaya [8, Section
4.1], and obtain the estimate (Z;,%) € X™ x Y™.
Then, the overall estimate (#,9) € A" x y»¥
of the encoded sequence can be described as & =
(%17"'7;%1\’) and Q: (gla"'agN)'

2) From two syndromes s1 2 Hiz—H;Z and s9 2 Hyy—
H,4, find the vectors e; € A™Y and ey € Y*¥ such
that Hie; = s; and Hoes = s3. These vectors can
be obtained efficiently by using the error correcting
procedure of algebraic geometry code. Then, (Z,§) =
(2 — e1,§ — e2) is the final estimate of the encoded
pair. a
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