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Abstract — This purpose of this paper is to study the
signal-to-interference (SIR) model used in power con-
trol problems to incorporate random network matri-
ces with log-normally distributed coefficients. Related
models on stochastic programming are presented and
applied to the random SIR model.

1 Introduction

The signal-to-interference (SIR) model defined in most
of the previous literature on power control in wireless
networks, is inherently deterministic. However, in a time-
varying channel the channel coefficients are random, lead-
ing to a particular form of random SIR model. In these
models the network matrices or the desired output (the
right hand side of the linear programming model) can
be random. Furthermore, the dimension of the network
matrices depends on the number users accessing the sys-
tem, which can also be considered as a random variable.
Moreover, even in a stationary channel with determinis-
tic sources or demands there can be estimation or system
identification errors which lead to random system model.
The stochastic programming approach applied here to the
power control problem incorporates some of these random
aspects when solving the optimization problem.

The model for stochastic power control in [1] assumed
that the interference is Normally distributed. This sim-
plifies the analysis and the power control solution (as the
link gains are assumed to be deterministic). However,
in general it is natural to consider other distributions.
As an example, log-normal distribution has non-negative
support and is often used to model long-term fading in
wireless networks. This paper presents a solution to opti-
mal power control assuming lognormally distributed net-
work coefficients. The solution is based on a stochastic
programming approach to optimal power control.

2 Deterministic Power Control Problem

The purpose of this section is to introduce the notations
and the deterministic power control problem, generalized
in the next section to the stochastic case. Consider the
deterministic power control problem for the uplink in a
wireless network [2] with a given number of users m as-
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signed to n base stations. Let x denote the mn vector
of transmit powers. Let G denote the m ×mn link gain
matrix, where m is the number of users in the system and
n is the number of receivers. The interference matrix [2]
is denoted by F.

In a deterministic uplink power control problem the
signal-to-interference ratio (SIR) of each link should ex-
ceed or meet the target αi, i = 1, ...m

SIRi =
giixi∑

j �=i rijgijxj + ei
≥ αi, i = 1, ..., m (1)

where m is the number of users in the model, gij is the
non-negative link gain between transmitter j and receiver
i, 0 ≤ rij ≤ 1 is a correlation coefficient between user i’s
and user j’s signal waveforms, xi is the power of trans-
mitter i, and ei is the external noise power at receiver
i. It is assumed here that there is one receiver for each
transmitter, but the receivers may or may not be located
in the same base station.

It is easy to see [3] that these equations are captured by

(Γ−1G −F)x ≥ e, (2)

where
Γ = diag(α1, ..., αm),

e = (e1, ..., em)T ,

G = diag(g11, ..., gmm)

and

[F]ij =
{

0 if i = j
gijrij if i �= j

in uplink. The configuration of users is feasible if

I−ΓG−1F (3)

is an M -matrix[4], in which case the solution is given by

x = (I −ΓG−1F)−1u, (4)

where u = ΓG−1e.

The quality of service (QoS) is measured by the signal-to-
noise ratio β. One formulation of the deterministic power
control problem can be written as

max
x≥0

β s.t. Gx ≥ βFx (5)



such that
m∑

i=1

xi ≤ R, (6)

where R is the given resource constraint.

3 Stochastic Power Control Problem

The purpose of this section is to generalize (5) to allow
for uncertainty in the elements of G and F. In practice
the fractional programming problem (5) can be solved by
iteratively solving simpler linear programming problems:
first, minimizing

∑m
i=1 xi for given β such that the QoS

inequalities in (5) are satisfied for all rows (users); sec-
ond, if the solution is feasible (

∑m
i=1 xi ≤ R) β can be

increased leading to a new iteration for minimum sum of
powers for given QoS restrictions. This iterative scheme
is applied in what follows for solving the stochastic ver-
sion of the original fractional problem (5).

Consider the stochastic resource allocation problem for a
communication system (recently discussed in [1]). Write
this problem in the general form:

maxβ (7)
subject to

P (
∑n

i gixi − β
∑k

i=n+1 gixi ≥ 0) ≥ p (8)∑
xi ≤ R,

x1, ..., xk ≥ 0,
β ≥ 0.

Assume that g1, ..., gn are constants and
ln(gn+1), .., ln(gk) are random variables that have a
joint normal distribution. The problem (7) is analogous
to the problem in [5]; here the randomness concerns
the random interference term I =

∑k
i=n+1 gixi that

is multiplied with β whereas in [5] only the vector
(g1, ..., gn) in (8) is random.

Let β = eγ . Then the problem can be written in the
following equivalent form:

maxγ (9)
subject to

P (
∑n

i=1 gixi −
∑k

i=n+1 e
γ+hi+yi ≥ 0) ≥ p∑n

i=1 xi +
∑k

i=n+1 e
yi ≤ R (10)

x1, ..., xk ≥ 0,

where eyi = xi, i = n + 1, ..., k, ehi = gi, i = n + 1, ...., k.
Note that in problem (9) the variables γ,n+1 , ...., yk are
unconstrained, e.g., they are not necessarily non-negative.
Problems (7) and (9) are equivalent. Theoretically there
is some minor mathematics to do here, since if an xi, i =
n + 1, ...., k is zero, it cannot be represented in the form
xi = eyi . However, in the application context we can
assume that each xi, i = n+1, ...., k is positive. This is so
since a representative user is being considered, and for no
user xi = 0 can solve the feasibility part of the capacity
maximization problem for p > 0.

Theorem 1. Problem (9) is a convex programming prob-
lem.

Proof. If we consider, for a moment, hn+1, ..hk as deter-
ministic variables, then

n∑
i=1

gixi −
k∑

i=n+1

eγ+hi+yi (11)

is a concave function. In fact, the first part is linear and
the second part (without the minus sign) is convex in its
argument, hence (9) is convex programming problem by
a theorem (see [6]).

The solution of problem (9) can use the SUMT method
[6]. Since this is not likely to be easy (since the appropri-
ate function values can be difficult to obtain) the follow-
ing section considers an alternative method-of-moments
approach to problem (9).

4 Example for Link Coefficients with
Lognormal distribution

The more standard assumption on the link coefficients is
to assume the coefficients to have a Lognormal distribu-
tion. This section presents a straightforward way of trans-
forming a resource allocation problem under the assump-
tion of lognormally distributed coefficients to one with
standard normally distributed coefficients analogously to
[7].

Let xi = eyi > 0, gi = ehi and assume
∑m

i=1 xi ≤ R.
Assume the link coefficients his have a joint normal dis-
tribution. Consider the problem defined in terms of log-
normally distributed coefficients

maxβ (12)
subject to

P (eyihi − β
∑

j �=i e
yjhj ≥ 0) ≥ p̄, i = 1, .., m. (13)

Problem (12) can be approximated by a model written in
terms of normally distributed random variables:

maxβ (14)
subject to

P (ln(Si) − ln(Ii) ≥ ln(β)) ≥ p̄ ∀i, (15)

where the random variable ln(Si) = yihi is normally dis-
tributed and ln(Ii) = ln(

∑
j �=i e

yjhj ) is approximated by
a normally distributed random variable using e.g. Wilkin-
son’s moment-matching approach, described in detail in
[8] and summarized below. As argued in [9] problem (12)
can be rewritten as

min(L(y)) − φ−1(1− p̄))
√
C(y) (16)

for given β, where

Li(y) =
−(mSi −mIi) + ln(β)√

C(y)
∀i; (17)



Let
√
C(y) denote the standard deviation similarly as

above and let mi1 denote the first moment for the ith
random variable (here obtained for the sum of log-normal
random variables using Wilkinson’s method, as described
in [10]). In this approach we replace each probabilistic
constraint in problem (12), with given β and R, by a sim-
pler constraint, which is derived by approximating the
sum of Lognormal random variables by with a single Log-
normal random variable with the same first and second
moment. Then, after appropriate logarithmic transfor-
mations the problem reduces to one with normal coeffi-
cients, as described above. The solution to the minimum
sum of powers problem is then obtained as the solution
to the following nonlinear programming problem:

min
∑
xi (18)

subject to
−(mS1 −mI1) + ln(β) −Φ−1(q̄)

√
C1(y) ≤ 0 (19)

... (20)
−(mSm −mIm) + ln(β) −Φ−1(q̄)

√
Cm(y) ≤ 0 (21)

where for i = 1, ...m

Ci(y) = V ar(Si) + V ar(Ii)

with
mSi = 2 ln(MSi,1)−

1
2
ln(MSi,2)

V ar(Si) =
√
ln(MSi,2)− 2 ln(MSi,1)

mIi = 2 ln(MIi,1)−
1
2
ln(MIi,2)

V ar(Ii) =
√
ln(MIi,2)− 2 ln(MIi,1)

MSi,1 = eh̄i+yi+
σ2

i
2 ,

MSi,2 = e2h̄i+yi+2σ2
i ,

MIi,1 =
∑
j �=i

eh̄j+yj+
σ2

j
2 ,

MIi,2 =
∑
j �=i

e2h̄j+yj+2σ2
j

+2
m−1∑
i=1

m∑
j=i+1

eh̄i+h̄j e1/2(σ2
i +σ2

j +2rij σ2
i ),

(23)

where q̄ = 1− p̄.
Figure 1 presents numerical results for a case with five
users with joint log-normal distribution; the minimum
sum of powers is shown to meet the given QoS require-
ment as given by β and the outage probability p. In the
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Figure 1: Sum of transmit powers (z) as a function of the
outage probability p and β (beta) in a symmetric case
when m = 5.
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Figure 2: Sum of transmit powers (z) as a function of the
outage probability p with different values of β (beta) in a
symmetric one dimensional network when m = 5

case depicted in the figure each users is in a symmetric
channel, with h̄i = 0, i = 1, ..., 5 and σ2

i = 1, i = 1, ..., 5
and coefficients are uncorrelated. In addition external
noise power was set to 1. It can be seen that the required
transmit power increases rapidly with increasing quality
of service parameters. When β = 0.1 and β = 0.075
the problem was infeasible when p ≤ 0.45 and p ≤ 0.4,
respectively.

Figure 2 presents numerical results for a one dimen-
sional network with five users and joint log-normal net-
work coefficients. The minimum sum of powers required
to meet the given QoS, as given by 0.025 ≤ β ≤ 0.1
and 0.125 ≤ p ≤ 0.275, is depicted. In this experiment
each users is in a symmetric channel with gij = d−4

ij e
hij ,

hij ∼ N(h̄ij, σ
2
ij). The mean is defined by

E(gij) = d−4
ij exp(h̄ij) (24)

with h̄ij = 0, i = 1, ..., 5 j = 1, ..., 5, and with matrix



D = (dij)

D =




1 3 5 3 1
1 1 3 5 3
3 1 1 3 5
5 3 1 1 3
3 5 3 1 1


 .

The elements of matrix D define the distances between
each transmitter (MS) and each receiver (BS). Here it
is assumed that the distance between the base stations is
two kilometers and the distance between each transmitter
and the nearest receiver is one kilometer. The propaga-
tion loss model 1/d4, adopted e.g. in [2], is used in the
definition of the mean in equation (24). That is, the in-
terference and signal power received by a base station at
distance d from a given transmitter is reduced by factor
1/d4.

The covariance term is given by

σij =
{

1 if i = j
0 if i �= j

Thus, all coefficients are uncorrelated. Here the inter-
ference inflicted on the two most distant base stations is
calculated only once, which is a convenient approximation
and causes negligible effect to the results. In addition ex-
ternal noise power was set to 1. It can be seen that the
spatial separation between the users and receivers enables
the system to achieve much higher quality of service in
terms of p and β than for example in the case shown in
Figure 1, where all users are received at the same base sta-
tion. In Figure 2 only the case when (β, p) = (0.1, 0.075)
in infeasible and subsequently omitted from the figure. In
this case the used nonlinear programming algorithm in-
creased transmit powers for each user until the maximum
allowed power was reached.

The aforementioned results were obtained using Wilkin-
son’s approximation in evaluating the probabilistic con-
straints. This approximation may not be appropriate or
most convenient in all cases. In particular, when the num-
ber of users m in the system is large, the central limit
theorem suggests solving

min
∑
xi (25)

subject to
−(mS1 −mI1β) − Φ−1(1− p̄)

√
C1(y) ≤ 0 (26)

... (27)
−(mSm −mImβ) − Φ−1(1− p̄)

√
Cm(y) ≤ 0 (28)

where

mSi = eh̄i+yi+
σ2

i
2 , i = 1, ..., m,

mIi =
∑
j �=i

eh̄j +yj+
σ2

j
2 , i = 1, ..., m,

and
Ci = eσ

2
i + β2(MIi,2 − (MIi,1)

2).

The application of the normal approximation is left for
further study. It is unlikely the results are improved by
this approach, but in some cases the solutions can poten-
tially be further simplified.

5 Conclusion

This paper has introduced a model for optimum stochas-
tic power control under lognormally distributed link gain
coefficients. Adding a covariance matrix to the analysis
leads to a solution requiring relatively more transmit en-
ergy to satisfy the QoS restrictions, as compared to a
traditional solution to stochastic power control.
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