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Abstract In this paper, we expand on a new tech-
nique for embedding digital information into G.711 en-
coded speech signals. Using the method of types as a tool
to analyze the statistical nature of a digital speech signal,
we demonstrate that our embedding scheme is capable of
embedding up to 1.6 Kbps of additional information at an
average embedded error rate of 10*. We are able to
achieve these embedded rates by not requiring the data to
be either hidden or decoded error free. This additional
bandwidth can be used for various low data rate applica-
tions. We offer such a scheme as a possibility for use in
other existing telecommunications links, both wired and
wireless, for the purpose of rate enhancement without
changing allocated bandwidths or source compression
methods.

I. Introduction

The field of information hiding contains several sub-
fields [1], including steganography, where a message is con-
ceded in another data stream, and watermarking, where
ownership data is included in digital objects to be protected.
A third subfield is the area of data embedding, wherein addi-
tional information is incorporated in a transmitted data
stream by using a key and distorting the original object
dightly. The embedded information cannot be reconstructed
without the use of the key.

We propose an approach to data embedding that is based
upon the method of types [2] and universal classification. In
this approach, a second stream is embedded within a primary
host stream without an increase in overall transmitted data
rate. The embedded data is extracted using a type-based uni-
versal receiver [3, 4, 5], without the use of akey. The choice
of type and rate for the embedded stream is based upon
analysis of portions of the host stream. The universal re-
celver learns the embedded type from the received data
alone, and hence, there is no side information as in previous
data embedding techniques. The embedding process and the
receiver are both data adaptive, so the host stream can be re-
constructed without error.

Two important differences between previous work in
data hiding and the proposed research are that we do not seek
to hide the embedded data from other users and that we re-
quire the host stream to be decoded error free. The overall
goal isto increase the effective received data rate without in-
creasing the transmitted data rate. At the outset, we do not
preclude the case where the embedded stream may be de-
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coded with errors. However, it is envisioned that in many
applications, by suitable choice of the encoded types with
respect to each frame, the embedded stream can be decoded
essentially error free. Using G.711 [6] as a test case, one
goal of this research is to investigate the tradeoffs between
maximizing the embedded data rate and keeping the error
rate in the reconstructed data stream at an arbitrarily small
level.

The conceptual steps of the approach are as follows.
The host stream to be transmitted is analyzed to determine
possible inherent data types. Modifications to these types
are established which can be used to transmit the embedded
data. These modifications must be accurately detectable by
atype-based receiver. For each frame of host data, the data
type is modified in such a way to represent the embedded
content. A universal receiver operating on the received data
extracts the type representing the embedded symbol and
both streams are processed and sent to the user.

We investigate this universal approach to data embed-
ding by identifying the intrinsic characteristics of a G.711
stream that facilitate data embedding. Because of the time-
domain waveform following nature of G.711, certain traits
are guaranteed. We study techniques for selecting the em-
bedded data types that will allow the highest rates for the
embedded stream. We examine the tradeoffs between em-
bedded rate and errors in the embedded content. We illus-
trate this approach to data embedding for G.711 but offer
the possibility that this approach can be used to expand the
delivered data rate of other existing telecommunications
links, both wired and wireless, without changing allocated
bandwidths or source compression methods.

Il. Data Embedding and Universal Classification

Our data embedding approach consists of the following
conceptual steps[7, 8] (seeFig. 1). The host data stream to
be transmitted is analyzed to determine the data types that
commonly occur in the stream. Modifications to these types
are then determined that can be used to send the embedded
data and that can be accurately detected by type-based uni-
versal receivers. Then, for each individual frame of host
data to be transmitted, the data type is modified in such a
way to represent the embedded data. The universal receiver
operates on the received data stream and extracts the data
type that represents the embedded data symbols. The em-
bedded data stream is then decoded and sent to the user.
After removing the modifications to the received data se-
guence due to the embedded data, the host data can be de-
coded. Primarily, we expect applications where the host



data streams are generated by lossy data compression
schemes.
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Fig. 1. Data Embedding System Block Diagram

Embedding data into digital signals can be thought of as
transmitting information over a communication channel that
is corrupted by strong interference and channel effects. Such
a model for the case of a binary communication system is
given as,

Hy: sy +n(t), Symbol O Transmitted

1
H;: s +n(t), Symbol 1 Transmitted. @)

In this model, a data symbol is hypothesized (i.e. H,) to
be transmitted from one of two sources. The binary data
symbol to be transmitted, s,, corresponds to the data symbol
that is to be embedded into the host signal, n(t). The strong
interference is representative of the host signal.

More generally, consider the following M-ary hypothesis
testing problem:

Hy: X"~P Source 1
Hy: X"~P, Source 2
: : @)
Hy: X"~Py Source M
Hya: Rejection Region

where the test vector X" is of length n. We assume that under
hypothesis H;, the test vector, X", is generated by a source
with probability measure P; (unknown to the detector). In
addition, due to the absence of an accurate statistical model
for the M sources, we assume that there exist training vectors
TN, i = 1,2,..M of length N from each of the M possible data
sources. Therefore, the classification between source typesis
made on the basis of the test vector, X", and the training vec-
tors, TV, i = 1,2,..M.

It has been shown that the asymptotically optimal Gen-
eralized Likelihood Ratio Test (GLRT) for determining if a
finite alphabet test sequence, X", arose from the same source
as afinite alphabet training sequence, T", is:

%‘JleQZ Qu(XMQ, (TN )%
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where Qy, Q,, and Q denote source densities[9, 10].

h(X, T)——I
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From an intuitive point of view, one can see that if the
data sequences X" and T," arise from the same source, then
h; will converge to zero in the limit. Alternatively, if the
data originated from different sources, then h; will converge
to some constant greater than zero which will alow for dis-
crimination between the proposed M hypotheses. It was
originally shown by Gutman [11] for the classification
problem that this test offers asymptotically optimal per-
formance over avery wide range of source statistics.

Unfortunately, due to the requirement of the supremum
calculations in (3), the detector is not practical to imple-
ment. However, through the use of the method of types, the
log-likelihood ratio is reduced to

hi (XiTi ’A) = dKL{Q(X")’Q(X",TiN)}

N (4)
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The quantities Q(X and represent the types
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of the data vectors, T;", X", and the concatenated vectors (X",
T). These types represent the empirical (histogram) esti-
mates of the statistics and joint statistics of the data vectors.
The distance metric is the functional dyk., the well known
divergence or relative entropy between the probability mass
functionsin its argument. A is a positive constant chosen to
satisfy some design criterion (i.e. rejection region). In addi-
tion to the above, we offer an alternative interpretation for
h(X,T;,A) in terms of the entropies of the types,

N nH{Q(X iy}~ H{Qyn)

h (X, T, A) =

The above expression for the discriminant function in
terms of the entropies is computationally preferable for on-
line processing as the entropies of the training seguences
can be pre-computed. Note that the joint type of X" and T
in terms of the marginalsis defined as

Qi * NQry
n+N '

QX" TN) = (6)

Il. Anaysis

Since our approach is data-adaptive, we wish to analyze
each sequence of host data to determine if an embedded data
stream can be accommodated without substantially com-
promising the host data. Thus, our classification problem is
the M-ary hypothesis problem with rejection [11], where the
rejection zone is used for the “no embedded data” case. The
number of bits embedded per host data sequence islog,{M}.

We do not wish to send any side information, so the
first issue to be addressed is under what conditions can an
embedded data stream be successfully decoded from the re-
ceived data stream. More specifically, if we embed log,{M}
bits in the host sequence such that the probabilities of
falsely decoding embedded hypothesis H; as one of the other



hypotheses, H; (j = 1,2,...,M, j #Zi), exponentially decreasesin
n (the host data sequence length) with parameter A, what can
we say about the probability of correctly decoding under the
M hypotheses? From [11], we know that if the training se-
guence N is of insufficient length with respect to n, then there
exists an hypothesis H; such that the probability of choosing
rejection given H; (decoding no embedded data given H;) ap-
proaches 1 as n - . However, for a sufficiently long
training sequence (length N) with respect tonasn - oo, the
probability of choosing the rejection region under H; is
bounded away from 1.

Since our approach is host data sequence adaptive, these
results imply that by adaptively varying the number of bits
embedded (log,{M}) per host sequence, the receiver will be
able to track the data embedding process at the encoder with
high probability, and without the transmission of side infor-
mation.

A second issue concerns how to modify the data type of
the host data such that data can be embedded and in such a
way that the receiver can determine the modified data type
from the received data stream only; that is, without side in-
formation. For a given host data sequence to be transmitted,
we consider the case where the minimum entropy datatypeis
determined and this minimum entropy data type is modified
by shifting within the region of support of the class of data
types. We defer justification of the minimum entropy data
type as the type to be modified and analyze the process of
data embedding via simple shifts of this type. Note that the
number of shifts corresponds to the number of hypotheses
that must be detected with the universal receiver. We will
only consider symmetrized, unimodal type classes in this de-
velopment.

We know that the optimal likelihood ratio test from the
Neyman-Pearson lemma can be written as the difference
between two relative entropies [2]. Thus, if we embed data
by shifting the symmetrized data type, the number of hy-
potheses that can be distinguished will be dependent upon the
spread of the type class and on the region of support. For M
= 2, there are three different errors that can occur: (i) Given
that Hy or H, has been sent, the detector may decide “no em-
bedded data” and reject both; (ii) Given that Hy is sent, the
detector decides Hy; and (iii) Given that H, is sent, the de-
tector decides H;. Stein's lemma says that we can fix one of
these error probabilities at some suitably small value and the
others can be made to approach zero exponentially with re-
spect to the relative entropy between hypotheses [2]. How-
ever, in our situation, all of these errors may be of equal sig-
nificance. What is needed is to select the shifts of the mini-
mum entropy data type to obtain equal probabilities of mak-
ing an error given that any hypothesis or the “no data’ caseis
sent. Thus, we can use a Bayesian approach with specified a
priori probabilities on the hypotheses, say 4, 7, and &, and
use Sanov's Theorem to bound the error probabilities with re-
spect to the nearest neighbor regions [2].

Once the minimum entropy type has been determined, data
can be embedded by constructing hypotheses other than

shifts of this data type, such asin [12]. These cases are also
being investigated.

IV. Results

Of fundamental importance to type-based data embed-
ding is the fact that this is a lossy approach. By removing
the many constraints (i.e. perceptual) in the typical data em-
bedding problem, we plan to embed information in a host
signal in such a way that the throughput of the channel is
increased without also increasing the transmitted data rate.
In order to achieve this additional rate, we are willing to ac-
cept a small number of errors in both the original and em-
bedded streams as long as these errors do not significantly
affect the quality of the original data stream. We stress the
fact that this approach to data embedding is not concerned
with attacks or secret key information. This approach fo-
cuses on rate enhancement.

In this section, we provide detail regarding the asymp-
totic analysis in the previous sections. We discuss results
regarding the relations between the lengths of the training
sequences (N), the lengths of the host sequence (n), and the
number of bits embedded in a particular host frame
(logx{M}). We discuss the amount of distortion associated
with making errors in detecting the correct embedded preci-
sion and symbols. We also suggest ways to compensate for
such errors.

To begin the data embedding process, one must have an
understanding of the master type inherent within the original
data stream. The master type for G.711 is shown in Fig. 2.
This type can be ascertained by observation of a typical
G.711 codeword sequence over a reasonable amount of
time. The resulting data type often requires some sort of 1:1
mapping in order to obtain the uni-modal characteristic that
is conducive to minimal error detection using a shift-based
modul ation/embedding scheme. This information is key to
the detection process for it is shifted versions of the master
type that are used to comprise the training data types. So
what is a reasonable amount of time over which
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to formulate a master type? In [3], Stolpman suggests that
range from 10% to 10* (i.e. B = N/n, the ratio of the length of
the training data sequence to the length of the data sequence).
Outside of this range there is typically no additional gain in
performance for a particular master type. Recall that n is di-
rectly proportional to the embedded data rate for a given se-
guence. In this work, we follow these predetermined guide-
lines for master type construction. Experimenting with these
results, we verified that, on average, increasing 3 did not sig-
nificantly affect the detection performance of the embedding
system.

Of vital importance to the embedded rates achieved and
for that matter, the embedded error rates as well, is the selec-
tion of the frame processing length. In the trials described in
this paper, n ranges from 4 to 30 depending on the target em-
bedded data rate. For higher target rates, the value of n
should decrease. In these trials, the value of n is held con-
stant over the particular speech segments being processed.
Suggestions for future work include altering n on a frame-by-
frame basis via voice activity detection (VAD) or using a
simple spreading measure on the current data type to deter-
mine an appropriate value of n for best probability of detec-
tion. In any case, the value of n will depend on the variance
of the master type produced from the source compression al-
gorithm from which the original data stream in being gener-
ated.

Determining the number of bits to embed on a frame-by-
frame basis contributes significantly to the overall average
data rate achievable for a particular speech segment. In the
previous section, we suggest that the receiver is able to track
the data embedding process at the encoder/decoder (i.e. de-
coding is present at the encoder) with high probability, and
without the transmission of side information. This is made
possible by the use of an intermediate type, which we call
the minimum entropy type. This data type can be formulated
at both the encoder and decoder and is shift invariant. The
property of shift (i.e. modulation) invariance is fundamental
to the calculation of this data type. We use an entropy meas-
ure and thresholding procedure on this intermediate type to
determine the number of bits to be embedded in the current
data frame.

Of particular interest to us is the achievable embedded
rates and error rates associated the above mentioned process.
Table | demonstrates results from our G.711 trials for 30-
second speech samples simulating typical human conversa-
tion. We show that we can embed up to an additional 2%
(i.e. 1.5 Kbps) of the host stream while maintaining a mini-
mal effect on the original data. Errors in the host stream
sound “click”-like in nature and are instantaneous in the
sense that they do not linger onintime. Thisisdueto the

Tablel. Average Embedded Dataand Error Rates for G.711

Embedded Data Rate Embedded Error Rate
1 10

.5 Kbps
3.2 Kbps 10°
9.6 Kbps 107

insignificant delay associated with G.711 speech coding. It is
likely that such errors in the host stream can be corrected by
the introduction of a dlight delay in the data embedding de-
coder. Such corrections in the host data stream can be accom-
plished because of the time domain waveform following na-
ture of the G.711 codec. The corrected host stream can then
be utilized to adjust for any additional errors detected in the
embedded stream as well. This additional processing is cur-
rently being explored and could significantly further lower the
error rates associated with both the embedded and host data
streams and consequently allow us to increase the embedded
rates for adesired probability of error.
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